Caracterização e Previsão de Falhas em Serviços de Conectividade: uma Aplicação à Rede Ipê

  • Vitor F. Zanotelli UFES
  • Giovanni Comarela UFES
  • Rodolfo S. Villaca UFES
  • Magnos Martinello UFES

Abstract


The Ipê Network is essential for the Brazilian scientific community as it interconnects universities and research centers across the country. This paper analyzes some characteristics of the Ipê Network and explores the use of machine learning techniques for predicting failures in connectivity services using public data provided by the ViaIpê monitoring tool. The problem is modeled as a binary classification task using recurrent neural networks. The results show that the dependability of the connectivity service varies significantly in the different PoPs of the Ipê Network. In addition, despite the heterogeneity of this service, the prediction models are promising, presenting good accuracy and good precision in some scenarios.

References

Azzouni, A. and Pujolle, G. (2018). Neutm: A neural network-based framework for traffic matrix prediction in sdn. In NOMS 2018 2018 IEEE/IFIP Network Operations and Management Symposium, pages 1–5.

Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford, J., Schlesinger, C., Talayco, D., Vahdat, A., Varghese, G., and Walker, D. (2014). P4: Programming protocol-independent packet processors. SIGCOMM Comput. Commun. Rev., 44(3):87–95.

Boutaba, R., Salahuddin, M. A., Limam, N., Ayoubi, S., Shahriar, N., Estrada-Solano, F., and Caicedo, O. M. (2018). A comprehensive survey on machine learning for networking: evolution, applications and research opportunities. Journal of Internet Services and Applications, 9(1):16.

Giannakou, A., Dwivedi, D., and Peisert, S. (2020). A machine learning approach for packet loss prediction in science ows. Future Generation Computer Systems, 102:190– 197.

Gill, P., Jain, N., and Nagappan, N. (2011). Understanding network failures in data centers: Measurement, analysis, and implications. SIGCOMM Comput. Commun. Rev., 41(4):350–361.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press. http://www.deeplearningbook.org.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Comput., 9(8):1735–1780.

Lens Shiang, E. P., Chien, W., Lai, C., and Chao, H. (2020). Gated recurrent unit networkIn 2020 International Conference on Information based cellular trafile prediction. Networking (ICOIN), pages 471–476.

Liberato, A., Martinello, M., Gomes, R. L., Beldachi, A. F., Salas, E., Villaca, R., Ribeiro, M. R. N., Kondepu, K., Kanellos, G., Nejabati, R., Gorodnik, A., and Simeonidou, D. (2018). Rdna: Residue-defined networking architecture enabling ultra-reliable IEEE Transactions on Network and Service Management, low-latency datacenters. 15(4):1473–1487.

Lin, T., Goyal, P., Girshick, R., He, K., and Dollár, P. (2017). Focal loss for dense object detection. In 2017 IEEE International Conference on Computer Vision (ICCV), pages 2999–3007.

Markopoulou, A., Iannaccone, G., Bhattacharyya, S., Chuah, C., Ganjali, Y., and Diot, C. (2008). Characterization of failures in an operational ip backbone network. IEEE/ACM Transactions on Networking, 16(4):749–762.

Martinello, M. (2005). Availability Modeling and Evaluation of Web-based Services-A pragmatic approach. PhD thesis, Institut National Polytechnique de Toulouse, INPT.

Wickham, H. (2014). Tidy data. The Journal of Statistical Software, 59.

Zhong, J., Guo, W., and Wang, Z. (2016). Study on network failure prediction based on alarm logs. In 2016 3rd MEC International Conference on Big Data and Smart City (ICBDSC), pages 1–7.

Zhou, Z. and Zhang, T. (2018). Applying machine learning to service assurance in network function virtualization environment. In 2018 First International Conference on Artificial Intelligence for Industries (AI4I), pages 112–115.
Published
2021-08-16
ZANOTELLI, Vitor F.; COMARELA, Giovanni; VILLACA, Rodolfo S.; MARTINELLO, Magnos. Caracterização e Previsão de Falhas em Serviços de Conectividade: uma Aplicação à Rede Ipê. In: BRAZILIAN SYMPOSIUM ON COMPUTER NETWORKS AND DISTRIBUTED SYSTEMS (SBRC), 39. , 2021, Uberlândia. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2021 . p. 141-154. ISSN 2177-9384. DOI: https://doi.org/10.5753/sbrc.2021.16717.

Most read articles by the same author(s)

1 2 3 4 > >>