Dimensionamento ótimo de fronthaul óptico com divisão flexível de funções de processamento em CF-RAN
Abstract
The baseband processing functions centralization in a cloud pool emerged as an alternative to reduce CAPEX and OPEX for the 5G network. However, this same centralization presented challenges for the fronthaul access networks in terms of bandwidth and delay. To mitigate such problems, several alternatives proposed by academia and industry have shown to be promising, including baseband functional split and the use of hybrid architectures. In this work, we propose an optimal solution to flexibly decide the baseband functional split considering the state of the network for energy efficiency in a CF-RAN hybrid architecture. The main objective is to make the optimal choice of the split option, centralizing processing functions in the cloud as much as possible.
References
3GPP (2017b). Study on new radio access technology: Radio access architecture and interfaces. Technical report 38.801, 3rd Generation Partnership Project (3GPP). Version 14.0.0.
Alimi, I. A., Teixeira, A. L., and Monteiro, P. P. (2018). Toward an efficient c-ran optical fronthaul for the future networks: A tutorial on technologies, requirements, challenges, and solutions. IEEE Communications Surveys Tutorials, 20(1):708–769.
Consortium, G. et al. (2017). Study on new radio access technology: Radio access architecture and interfaces. Technical report, Technical Report TR-38.801 Release.
Figueiredo, G. B., Wang, X., Meixner, C. C., Tornatore, M., and Mukherjee, B. (2016). Load balancing and latency reduction in multi-user comp over twdm-vpons. In IEEE Intl. Conf. on Communications (ICC).
Gao, Z., Zhang, J., Yan, S., Xiao, Y., Simeonidou, D., and Ji, Y. (2019). Deep reinforcement learning for bbu placement and routing in c-ran. In Optical Fiber Communications.
Guizani, Z. and Hamdi, N. (2017). Cran, h-cran, and f-ran for 5g systems: Key capabilities and recent advances. International Journal of Network Management, 27(5):e1973. e1973 nem.1973.
Harutyunyan, D. and Riggio, R. (2018). Flex5g: Flexible functional split in 5g networks. IEEE Trans. on Network and Service Management, pages 961–975.
Konstantinou, D., Bressner, T. A., Rommel, S., Johannsen, U., Johansson, M. N., Ivashina, M. V., Smolders, A. B., and Tafur Monroy, I. (2020). 5g ran architecture based on analog radio-over-fiber fronthaul over udwdm-pon and phased array fed reector antennas. Optics Communications, 454:124464.
Larsen, L. M. P., Checko, A., and Christiansen, H. L. (2019). A survey of the functional IEEE Communications Surveys splits proposed for 5g mobile crosshaul networks. Tutorials, 21(1):146–172.
Marotta, A., Cassioli, D., Kondepu, K., Antonelli, C., and Valcarenghi, L. (2019). Exploiting exible functional split in converged software defined access networks. IEEE/OSA Journal of Optical Communications and Networking, 11(11):536–546.
Mei, H. and Peng, L. (2020). Flexible functional split for cost-efficient c-ran. Computer Communications, 161:368–374.
Moreira Zorello, L. M., Troia, S., Quagliotti, M., and Maier, G. (2020). Power-aware optimization of baseband-function placement in cloud radio access networks. In 2020 International Conference on Optical Network Design and Modeling (ONDM), pages 1–6.
Pelekanou, A., Anastasopoulos, M., Tzanakaki, A., and Simeonidou, D. (2018). Provisioning of 5g services employing machine learning techniques. In International Conference on Optical Network Design and Modeling (ONDM), pages 200–205.
Peng, C., Lee, S.-B., Lu, S., Luo, H., and Li, H. (2011). Traffic-driven power saving in operational 3g cellular networks. In Proceedings of the 17th annual international conference on Mobile computing and networking, pages 121–132.
Ranaweera, C., Wong, E., Nirmalathas, A., Jayasundara, C., and Lim, C. (2018). 5g c-ran with optical fronthaul: An analysis from a deployment perspective. Journal of Lightwave Technology, 36(11):2059–2068.
Riva, M., Donâncio, H., Almeida, F. R., Figueiredo, G. B., Tinini, R. I., Cesar Jr, R. M., and Batista, D. M. (2018). An elastic optical network-based architecture for the 5g fronthaul. In Anais do XXXVI Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos. SBC.
Tinini, R. I., Batista, D. M., Figueiredo, G. B., Tornatore, M., and Mukherjee, B. (2019). Energy-efficient baseband processing via vbbu migration in virtualized cloud-fog ran. In IEEE GLOBECOM.
Tinini, R. I., Batista, D. M., Figueiredo, G. B., Tornatore, M., and Mukherjee, B. (2019). Low-latency and energy-efficient bbu placement and vpon formation in virtualized cloud-fog ran. IEEE/OSA Journal of Optical Communications and Networking, 11(4):B37–B48.
Tinini, R. I., dos Santos, M. R. P., Figueiredo, G. B., and Batista, D. M. (2020). 5GPy: A SimPy-based simulator for performance evaluations in 5G hybrid Cloud-Fog RAN architectures. Simulation Modelling Practice and Theory, 101:102030.
Tohidi, M., Bakhshi, H., and Parsaeefard, S. (2020). Flexible function splitting and resource allocation in c-ran for delay critical applications. IEEE Access, 8:26150–26161.
Wang, X., Alabbasi, A., and Cavdar, C. (2017). Interplay of energy and bandwidth consumption in cran with optimal function split. In IEEE Intl. Conf. on Communications.
Wu, J., Zhang, Z., Hong, Y., and Wen, Y. (2015). Cloud radio access network (c-ran): a primer. IEEE Network, 29(1):35–41.
