Posicionamento quase ideal de vBBU e atribuição de comprimento de onda em Cloud Fog RAN
Resumo
Na arquitetura Cloud fog Radio Access Network (CF-RAN), a ativação ótima e dinâmica de fog nodes e o posicionamento de unidades de banda base virtuais (virtual BaseBand Unit vBBU) são realizados por meio de propostas utilizando programação linear inteira (PLI). Porém, a PLI apresenta problemas de escalabilidade em cenários de redes maiores. Assim, nesse artigo é proposto uma solução baseada em relaxação linear para evitar problemas de escalabilidade e para prover uma solução aproximada da PLI para o posicionamento dinâmico de vBBUs na CF-RAN. Os resultados mostram que a relaxação linear reduz significativamente o tempo de execução e é capaz de prover soluções sub-ótimas muito próximas das providas pela PLI.
Referências
Figueiredo, G. B., Wang, X., Meixner, C. C., Tornatore, M., and Mukherjee, B. (2016). Load balancing and latency reduction in multi-user comp over twdm-vpons. In IEEE Intl. Conf. on Communications (ICC).
Gkatzios, N., Anastasopoulos, M., Tzanakaki, A., and Simeonidou, D. (2019). Efficiency gains in 5g softwarised radio access networks. EURASIP Journal on Wireless Communications and Networking, 2019(1):183.
Katti, R. and Prince, S. (2019). A survey on role of photonic technologies in 5g communication systems. Photonic Network Communications, 38(2):185–205.
Matousek, J. and Gärtner, B. (2007). Integer Programming and LP Relaxation, pages 29–40. Springer Berlin Heidelberg, Berlin, Heidelberg.
Mohammed Mikaeil, A., Hu, W., and Li, L. (2019). Joint allocation of radio and fronthaul resources in multi-wavelength-enabled c-ran based on reinforcement learning. Journal of Lightwave Technology.
Morrison, D. R., Jacobson, S. H., Sauppe, J. J., and Sewell, E. C. (2016). Branch-andbound algorithms: A survey of recent advances in searching, branching, and pruning. Discrete Optimization, 19:79–102.
Nassar, A. and Yilmaz, Y. (2019). Reinforcement learning for adaptive resource allocation in fog ran for iot with heterogeneous latency requirements. IEEE Access, 7:128014– 128025.
Noor-E-Alam, M. and Doucette, J. (2012). Relax-and-fix decomposition technique for solving large scale grid-based location problems. Computers & Industrial Engineering, 63(4):1062–1073.
Peng, C., Lee, S.-B., Lu, S., Luo, H., and Li, H. (2011). Traffic-driven power saving in operational 3g cellular networks. In Proceedings of the 17th annual international conference on Mobile computing and networking, pages 121–132.
Schweissguth, E., Timmermann, D., Parzyjegla, H., Danielis, P., and Mühl, G. (2020). Ilpbased routing and scheduling of multicast realtime traffic in time-sensitive networks. In 2020 IEEE 26th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), pages 1–11.
Tinini, R. I., Batista, D. M., Figueiredo, G. B., Tornatore, M., and Mukherjee, B. (2019). Energy-efficient baseband processing via vbbu migration in virtualized cloud-fog ran. In IEEE GLOBECOM.
Tinini, R. I., Batista, D. M., Figueiredo, G. B., Tornatore, M., and Mukherjee, B. (2020). Energy-efficient vbbu migration and wavelength reassignment in cloud-fog ran. IEEE Transactions on Green Communications and Networking, pages 1–1.
Tinini, R. I., dos Santos, M. R. P., Figueiredo, G. B., and Batista, D. M. (2020). 5GPy: A SimPy-based simulator for performance evaluations in 5G hybrid Cloud-Fog RAN architectures. Simulation Modelling Practice and Theory, 101:102030.
Wang, X., Alabbasi, A., and Cavdar, C. (2017). Interplay of energy and bandwidth consumption in cran with optimal function split. In IEEE Intl. Conf. on Communications.
Wolsey, L. A. (1998). Integer programming, volume 52. John Wiley & Sons.
Wu, J., Zhang, Z., Hong, Y., and Wen, Y. (2015). Cloud radio access network (c-ran): a primer. IEEE Network, 29(1):35–41.
Zaky Kasem, A., Doucette, J., et al. (2012). Ilp model and relaxation-based decomposition approach for incremental topology optimization in p-cycle networks. Journal of Computer Networks and Communications, 2012.