NEMESIS: Mecanismo para Formação de Nuvens Veiculares Baseado em Previsão de Mobilidade

  • Joahannes B. D. da Costa UNICAMP
  • Wellington V. Lobato Junior UNICAMP
  • Allan M. de Souza UNICAMP
  • Eduardo Cerqueira UFPA
  • Denis Rosário UFPA
  • Leandro A. Villas UNICAMP

Abstract


Considering the rapid modernization of vehicles, which directs them to increasingly intelligent and connected entities, the paradigm of Vehicle Edge Computing emerges. This paradigm provides cloud computing services closer to vehicular users through vehicular resources aggregation, called vehicular clouds formation. However, due to the high dynamicity of the vehicle environment, aggregating and using these resources poses some challenges. The main challenge is efficiently selecting which vehicles will take management roles in computational power, the so-called leading vehicles. Thus, this work presents the NEMESIS, a mechanism based on mobility prediction for vehicular clouds formation. NEMESIS selects vehicles with the longest dwell-time in the clouds to manage the resource utilization process. Simulation results have shown that NEMESIS can increase vehicular cloud lifetime, minimize leader changes, send fewer messages on the network, which contributes to reducing packet collision, and ultimately enables efficient use of aggregate vehicular resources.

References

Abdel-Halim, I. T., Fahmy, H. M. A., and Bahaa-El Din, A. M. (2019). Mobility prediction-based efficient clustering scheme for connected and automated vehicles in vanets. Computer Networks, 150:217–233.

Boukerche, A. and Soto, V. (2020). Computation offloading and retrieval for vehicular edge computing: Algorithms, models, and classification. ACM Computing Surveys (CSUR), 53(4):1–35.

da Costa, J. B. D., Meneguette, R. I., Rosário, D., and Villas, L. A. (2020). Combinatorial optimization-based task allocation mechanism for vehicular clouds. In Proceedings of the IEEE 91st Vehicular Technology Conference (VTC Spring), pages 1–5. IEEE.

Duarte, J. M., Kalogeiton, E., Soua, R., Manzo, G., Palattella, M. R., Maio, A. D., Braun, T., Engel, T., Villas, L. A., and Rizzo, G. A. (2018). A multi-pronged approach to adaptive and context aware content dissemination in vanets. Mobile Networks and Applications, 23(5):1247–1259.

Hagenauer, F., Higuchi, T., Altintas, O., and Dressler, F. (2019). Efficient data handling in vehicular micro clouds. Ad Hoc Networks, 91:101871.

Long, W., Li, T., Xiao, Z., Wang, D., Zhang, R., Regan, A., Chen, H., and Zhu, Y. (2022). Location prediction for individual vehicles via exploiting travel regularity and preference. IEEE Transactions on Vehicular Technology.

Luo, Q., Li, C., Luan, T., and Shi, W. (2021). Minimizing the delay and cost of computation offloading for vehicular edge computing. IEEE Transactions on Services Computing, 1374:1–12.

Meneguette, R., De Grande, R., Ueyama, J., Filho, G. P. R., and Madeira, E. (2021). Vehicular edge computing: Architecture, resource management, security, and challenges. ACM Computing Surveys (CSUR), 55(1):1–46.

Olariu, S. (2019). A survey of vehicular cloud research: Trends, applications and challenges. IEEE Transactions on Intelligent Transportation Systems, 21(6):2648–2663.

Pannu, G. S., Ucar, S., Higuchi, T., Altintas, O., and Dressler, F. (2021). Dwell time estimation at intersections for improved vehicular micro cloud operations. Ad Hoc Networks, 122:102606.

Sun, G., Song, L., Yu, H., Chang, V., Du, X., and Guizani, M. (2018). V2v routing in a vanet based on the autoregressive integrated moving average model. IEEE Transactions on Vehicular Technology, 68(1):908–922.

Wu, X., Zhao, S., Zhang, R., and Yang, L. (2020). Mobility prediction-based joint task In Proceedings of assignment and resource allocation in vehicular fog computing. the IEEE Wireless Communications and Networking Conference (WCNC), pages 1–6. IEEE.

Zhao, P., Feng, L., Yu, P., Li, W., and Qiu, X. (2017). A social-aware resource allocation for 5g device-to-device multicast communication. IEEE Access, 5:15717–15730.
Published
2022-05-23
COSTA, Joahannes B. D. da; LOBATO JUNIOR, Wellington V.; SOUZA, Allan M. de; CERQUEIRA, Eduardo; ROSÁRIO, Denis; VILLAS, Leandro A.. NEMESIS: Mecanismo para Formação de Nuvens Veiculares Baseado em Previsão de Mobilidade. In: BRAZILIAN SYMPOSIUM ON COMPUTER NETWORKS AND DISTRIBUTED SYSTEMS (SBRC), 40. , 2022, Fortaleza. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2022 . p. 280-293. ISSN 2177-9384. DOI: https://doi.org/10.5753/sbrc.2022.222309.

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 > >>