Classificação GeoSocial de Contatos para Disseminação de Dados em Redes Veiculares Oportunistas
Abstract
Research in opportunistic vehicular networks has attracted attention in contact selection due to its application in data communication networks. We present a GeoSocial model for contact selection and message routing in urban environments based on the amplitude and frequency of movement and on the vehicle’s social structure. We consider the temporality in the formation of the network links to extract these pieces of information. The model was evaluated in a real taxi drive movement database. The results show that with a small number of vehicles it is possible to achieve superior outcome in the delivery rate with low relative overhead compared to other routing protocols.
References
Borgatti, S. P. and Halgin, D. S. (2011). Analyzing afliation networks. The Sage handbook of social network analysis, 1:417–433.
Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., and Rabuf, A. (2014). CRAWDAD dataset roma/taxi (v. 2014-07-17). Computer Communications.
Celes, C., Silva, F., Boukerche, A., Andrade, R., and Loureiro, A. (2017). Improving vanet simulation with calibrated vehicular mobility traces. IEEE Transactions on Mobile Computing.
Cheng, Z., Caverlee, J., Lee, K., and Sui, D. Z. (2011). Exploring Millions of Footprints in Location Sharing Services. Icwsm, 2010(Cholera):81–88.
Costa, E. C., Vieira, A. B., Wehmuth, K., Ziviani, A., and Paula, A. (2015). Time Centrality in Dynamic Complex Networks. ArXiv, pages 1–12.
Cunha, F. D., Alvarenga, D. A., Viana, A. C., Mini, R. A., and Loureiro, A. A. (2015). In ProceeUnderstanding interactions in vehicular networks through taxi mobility. dings of the 12th ACM Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor, & Ubiquitous Networks, pages 17–24. ACM.
Cunha, F. D., Vianna, A. C., Mini, R. A., and Loureiro, A. A. (2014). Is it possible to nd social properties in vehicular networks? In Computers and Communication (ISCC), 2014 IEEE Symposium on, pages 1–6. IEEE.
Granovetter, M. S. (1977). The strength of weak ties. pages 347–367.
Hagberg, A. A., Schult, D. A., and Swart, P. J. (2008). Exploring network structure, dynamics, and function using NetworkX. In Proceedings of the 7th Python in Science Conference (SciPy2008), pages 11–15, Pasadena, CA USA.
Hui, P., Crowcroft, J., and Yoneki, E. (2011). BUBBLE Rap: Social-based forwarding in delay-tolerant networks. IEEE Transactions on Mobile Computing, 10(11):1576– 1589.
Lance, G. N. and Williams, W. T. (1966). Computer programs for hierarchical polythetic classication (“similarity analyses”). The Computer Journal, 9(1):60–64.
Masuda, N. and Lambiotte, R. (2016). A Guidance to Temporal Networks. World Scientic.
Robusto, C. C. (1957). The Cosine-Haversine Formula. Source: The American Mathematical Monthly, 64(1):38–40.
Scott, J. (2017). Social network analysis. Sage.
Thakur, G. S., Kumar, U., Helmy, A., and Hsu, W.-J. (2010). Analysis of spatiotemporal preferences and encounter statistics for dtn performance. arXiv preprint arXiv:1007.0960.
Vaz De Melo, P. O. S., Viana, A. C., Fiore, M., Jaffrés-Runser, K., Le Mouël, F., Loureiro, A. A. F., Addepalli, L., and Guangshuo, C. (2015). RECAST: Telling apart social and random relationships in dynamic networks. Performance Evaluation, 87:19–36.
Villas, L. A., Boukerche, A., Loureiro, A. A., and Ueyama, J. (2013). Um novo algoritmo geográco ciente de partições na rede para disseminação de dados em redes veiculares. XXXI Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos-SBRC.
