ProCoopa: um Protocolo Cooperativo para Redes de Sensores sem fio Aquáticas

  • Lucas S. Cerqueira UFJF
  • Alex B. Vieira UFJF
  • Luiz F. M. Vieira UFMG
  • Marcos A. M. Vieira UFMG
  • José A. M. Nacif UFV

Resumo


O monitoramento de ambientes aquáticos ainda é uma tarefa difícil e dispendiosa. Neste artigo, apresentamos ProCoopa: um Protocolo Cooperativo para Redes de Sensores sem fio Aquáticas. O ProCoopa funciona de forma síncrona/assíncrona sobre o método TDMA combinado com um esquema ARQ baseado em Selective Repeat. Ele usa os nós sensores ociosos como nós retransmissores, aumentando a diversidade do espaço de comunicação. Nossas simulações mostram que, quando comparado a um protocolo não cooperativo, o ProCoopa reduz a taxa de erro de pacotes em 28,32% e aumenta o goodput em 16,87% enquanto gasta menos de 1% a mais de energia.

Referências

Anjangi, P. and Chitre, M. (2015). Design and implementation of super-tdma: A mac protocol exploiting large propagation delays for underwater acoustic networks. In Proc. of the 10th International Conference on Underwater Networks & Systems. ACM.

Azad, S., Casari, P., Guerra, F., and Zorzi, M. (2011). On arq strategies over random access protocols in underwater acoustic networks. In Proc. of IEEE OCEANS.

Azad, S., Casari, P., and Zorzi, M. (2013). The underwater selective repeat error control protocol for multiuser acoustic networks: Design and parameter optimization. IEEE Transactions on Wireless Communications, 12(10):4866–4877.

Basagni, S., Petrioli, C., Petroccia, R., and Spaccini, D. (2015). Carp: A channel-aware routing protocol for underwater acoustic wireless networks. Ad Hoc Networks, 34:92– 104.

Brekhovskikh, L. M., Lysanov, Y. P., and Beyer, R. T. (1991). Fundamentals of ocean acoustics. The Journal of the Acoustical Society of America, 90(6):3382–3383.

Carbonelli, C., Chen, S.-H., and Mitra, U. (2009). Error propagation analysis for underwater cooperative multi-hop communications. Ad Hoc Networks, 7(4):759–769.

Carbonelli, C. and Mitra, U. (2006). Cooperative multihop communication for underwater acoustic networks. In Proc. of the 1st ACM international workshop on Underwater networks.

Chitre, M., Topor, I., and Koay, T.-B. (2012). The unet-2 modem—an extensible tool for underwater networking research. In Proc. of IEEE OCEANS.

Coutinho, R. W., Boukerche, A., Vieira, L. F., and Loureiro, A. A. (2015). Modeling and analysis of opportunistic routing in low duty-cycle underwater sensor networks. In Proc. of the 18th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems.

Coutinho, R. W., Boukerche, A., Vieira, L. F., and Loureiro, A. A. (2016a). Geographic and opportunistic routing for underwater sensor networks. IEEE Transactions on Computers, 65(2):548–561.

Coutinho, R. W., Vieira, L. F. M., and Loureiro, A. A. F. (2013). DCR: Depth-controlled routing protocol for underwater sensor networks. In 2013 IEEE Symposium on Computers and Communications (ISCC).

Coutinho, R. W. L., Boukerche, A., Vieira, L. F. M., and Loureiro, A. A. F. (2014). GEDAR: geographic and opportunistic routing protocol with depth adjustment for mobile underwater sensor networks. In IEEE Int. Conference on Communications.

Coutinho, R. W. L., Boukerche, A., Vieira, L. F. M., and Loureiro, A. A. F. (2016b). Design guidelines for opportunistic routing in underwater networks. IEEE Communications Magazine, 54(2):40–48.

Demirors, E., Sklivanitis, G., Santagati, G. E., Melodia, T., and Batalama, S. N. (2014). Design of a software-dened underwater acoustic modem with real-time physical layer adaptation capabilities. In Proc. of the ACM Int. Conference on Underwater Networks & Systems.

Domingo, M. C. (2011). A distributed energy-aware routing protocol for underwater wireless sensor networks. Wireless Personal Communications, 57(4):607–627.

Ghosh, A., Lee, J.-W., and Cho, H.-S. (2013). Throughput and energy efciency of a cooperative hybrid arq protocol for underwater acoustic sensor networks. Sensors, 13(11):15385–15408.

Han, J.-W., Ju, H.-J., Kim, K.-M., Chun, S.-Y., and Dho, K.-C. (2008a). A study on the cooperative diversity technique with amplify and forward for underwater wireless communication. In Proc. of IEEE OCEANS.

Han, Z., Sun, Y. L., and Shi, H. (2008b). Cooperative transmission for underwater acoustic communications. In IEEE Int. Conference on Communications.

Kim, H.-w. and Cho, H.-S. (2016). A cooperative arq-based mac protocol for underwater wireless sensor networks. In Proc. of the 11th ACM International Conference on Underwater Networks & Systems.

Laneman, J. N., Tse, D. N., and Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efcient protocols and outage behavior. IEEE Trans. on Information theory, 50(12):3062–3080.

Lee, J. W., Cheon, J. Y., and Cho, H.-S. (2010a). A cooperative arq scheme in underwater acoustic sensor networks. In Proc. of IEEE OCEANS.

Lee, J. W. and Cho, H.-S. (2011). A cooperative arq scheme for multi-hop underwaIn IEEE Symposium on Underwater Technology and ter acoustic sensor networks. Workshop on Scientic Use of Submarine Cables and Related Technologies.

Lee, U., Wang, P., Noh, Y., Vieira, L. F. M., Gerla, M., and Cui, J.-H. (2010b). Pressure routing for underwater sensor networks. In Proc. of the IEEE Conference on Computer Communications (INFOCOM).

Pinto, D., Viana, S. S., Nacif, J. A. M., Vieira, L. F., Vieira, M. A., Vieira, A. B., and Fernandes, A. O. (2012). Hydronode: a low cost, energy efcient, multi purpose node for underwater sensor networks. In Proc. of the IEEE Conference on Local Computer Networks (LCN).

Rappaport, T. S. et al. (1996). Wireless communications: principles and practice, volume 2. prentice hall PTR New Jersey.

Renner, C. and Golkowski, A. J. (2016). Acoustic modem for micro auvs: design and In Proc. of the ACM International Conference on Underwater practical evaluation. Networks & Systems.

Sozer, E. M., Stojanovic, M., and Proakis, J. G. (2000). Underwater acoustic networks. IEEE journal of oceanic engineering, 25(1):72–83.

Tomasi, B., Casari, P., Badia, L., and Zorzi, M. (2015). Cross-layer analysis via markov models of incremental redundancy hybrid arq over underwater acoustic channels. Ad Hoc Networks, 34:62–74.

Urick, R. J. (1975). Principles of underwater sound-2.

Vajapeyam, M., Vedantam, S., Mitra, U., Preisig, J. C., and Stojanovic, M. (2008). Distributed space–time cooperative schemes for underwater acoustic communications. IEEE Journal of Oceanic Engineering, 33(4):489–501.

Viana, S. S., Vieira, L. F., Vieira, M. A., Nacif, J. A. M., and Vieira, A. B. (2015). Survey on the design of underwater sensor nodes. Design Automation for Embedded Systems, pages 1–20.

Vieira, L., Loureiro, A., Fernandes, A., and Campos, M. (2010). Redes de sensores aquáticas. XXVIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, Gramado, RS, Brasil, 1:199–240.

Vieira, L. F. M. (2012). Performance and trade-offs of opportunistic routing in underwater networks. In IEEE Wireless Communications and Networking Conference.

Vieira, L. F. M., Vieira, M. A. M., Nacif, J. A., and Vieira, A. B. (Jan. 2018). Autonomous wireless lake monitoring. In Computing in Science & Engineering (Print).

Wang, H., Wang, S., Zhang, E., and Zou, J. (2016). A network coding based hybrid arq protocol for underwater acoustic sensor networks. Sensors, 16(9):1444.

Wang, P., Feng, W., Zhang, L., and Li, V. O. (2011). Asynchronous cooperative transmission in underwater acoustic networks. In Underwater Technology (UT), 2011 IEEE Symposium on and 2011 Workshop on Scientic Use of Submarine Cables and Related Technologies (SSC).

Wenz, G. M. (1962). Acoustic ambient noise in the ocean: Spectra and sources. The Journal of the Acoustical Society of America, 34(12):1936–1956.
Publicado
10/05/2018
CERQUEIRA, Lucas S.; VIEIRA, Alex B.; VIEIRA, Luiz F. M.; VIEIRA, Marcos A. M.; NACIF, José A. M.. ProCoopa: um Protocolo Cooperativo para Redes de Sensores sem fio Aquáticas. In: SIMPÓSIO BRASILEIRO DE REDES DE COMPUTADORES E SISTEMAS DISTRIBUÍDOS (SBRC), 36. , 2018, Campos do Jordão. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2018 . p. 197-210. ISSN 2177-9384. DOI: https://doi.org/10.5753/sbrc.2018.2416.

Artigos mais lidos do(s) mesmo(s) autor(es)

<< < 1 2 3 4 > >>