Unveiling the Elasticity of Virtual Machines in VANETs: A Strategy to Enhance Capacity Planning in RSUs

  • Luis Guilherme Silva UFPI
  • Carlos Brito UFPI
  • Israel Cardoso UFPI
  • Arthur Sabino UFPI
  • Luiz Nelson Lima UFPI
  • Glauber Gonçalves UFPI
  • Geraldo P. Rocha Filho UESB
  • Iure Fé UFPI
  • Francisco Airton Silva UFPI

Abstract


This paper presents a performance model designed to evaluate the effectiveness of a virtual machine auto-escalonamento system applied to monitoring on highways subject to high traffic variability with VANETs. For this, an approach based on stochastic Petri nets was used, capable of capturing a variety of distinct behaviors associated with the auto-escalonamento system. The results obtained reveal the importance of the quantity of virtual machines already allocated in the system initially. Furthermore, it was found that the effective application of the auto-escalonamento and reinstantiation strategy played a significant role in optimizing the overall performance of the system.

References

Araújo, G., Rodrigues, L., Oliveira, K., Fé, I., Khan, R., and Silva, F. A. (2021). Vehicular cloud computing networks: Availability modelling and sensitivity analysis. International Journal of Sensor Networks, 36(3):125–138.

Bobbio, A., Puliafito, A., Telek, M., and Trivedi, K. S. (1998). Recent developments in non-markovian stochastic petri nets. Journal of Circuits, Systems, and Computers, 8(01):119–158.

Carvalho, D., Rodrigues, L., Endo, P. T., Kosta, S., and Silva, F. A. (2020). Edge servers placement in mobile edge computing using stochastic petri nets. International Journal of Computational Science and Engineering, 23(4):352–366.

Cumbal, R., Gutiérrez, S., Guerrero, C., Hincapié, R., and Arévalo, G. (2019). Optimal resources allocation from vanet infrastructures in dynamic mobile environments. In 2019 IEEE Latin-American Conference on Communications (LATINCOM), pages 1–5. IEEE.

Fé, I., Matos, R., Dantas, J., Melo, C., Nguyen, T. A., Min, D., Choi, E., Silva, F. A., and Maciel, P. R. M. (2022a). Performance-cost trade-off in auto-scaling mechanisms for cloud computing. Sensors, 22(3):1221.

Fé, I., Matos, R., Dantas, J., Melo, C., Nguyen, T. A., Min, D., Choi, E., Silva, F. A., and Maciel, P. R. M. (2022b). Performance-cost trade-off in auto-scaling mechanisms for cloud computing. Sensors, 22(3):1221.

Jain, R. (1990). The art of computer systems performance analysis: techniques for experimental design, measurement, simulation, and modeling. John Wiley & Sons.

Karabulut, M. A., Shah, A. S., Ilhan, H., Pathan, A.-S. K., and Atiquzzaman, M. (2023). Inspecting vanet with various critical aspects–a systematic review. Ad Hoc Networks, page 103281.

Macêdo, J., Carvalho, V., Andrade, E., and Silva, F. (2022). Modeling and analysis of communication in vanets using rsus. In Proceedings of the 21st Workshop on Performance of Computer and Communication Systems, pages 96–107, Porto Alegre, RS, Brasil. SBC.

Martin-Faus, I. V., Urquiza-Aguiar, L., Aguilar Igartua, M., and Guérin-Lassous, I. (2018). Transient analysis of idle time in vanets using markov-reward models. IEEE Transactions on Vehicular Technology, 67(4):2833–2847.

Naresh, R., Narayanan, K. L., Kumar, C. V., and Senthilkumar, S. (2024). A routing in vanet towards smart business cities using optimization techniques. In Digital Twin Technology and AI Implementations in Future-Focused Businesses, pages 1–13. IGI Global.

Ouhmidou, H., Nabou, A., Ikidid, A., Bouassaba, W., Ouzzif, M., and El Kiram, M. A. (2023). Traffic control, congestion management and smart parking through vanet, ml, and iot: A review. In 2023 10th International Conference on Wireless Networks and Mobile Communications (WINCOM), pages 1–6. IEEE.

Parashar, S. and Tiwari, R. (2023). Traffic control and qos improvement analysis in v-to-v and v-to-rsu communication in vanet. In 2023 World Conference on Communication & Computing (WCONF), pages 1–5. IEEE.

Rodrigues, L., Neto, F., Gonçalves, G., Soares, A., and Silva, F. A. (2021). Performance evaluation of smart cooperative traffic lights in vanets. International Journal of Computational Science and Engineering, 24(3):276–289.

Siddiqi, M. H., Alruwaili, M., Ali, A., Haider, S. F., Ali, F., and Iqbal, M. (2020). Dynamic priority-based efficient resource allocation and computing framework for vehicular multimedia cloud computing. IEEE access, 8:81080–81089.

Silva, B., Matos, R., Callou, G., Figueiredo, J., Oliveira, D., Ferreira, J., Dantas, J., Lobo, A., Alves, V., and Maciel, P. (2015). Mercury: An integrated environment for performance and dependability evaluation of general systems. In Proceedings of the Industrial Track at 45th Dependable Systems and Networks Conference, DSN, pages 1–4.

Silva, L. G., Cardoso, I., Brito, C., Barbosa, V., Nogueira, B., Choi, E., Nguyen, T. A., Min, D., Lee, J. W., and Silva, F. A. (2023). Urban advanced mobility dependability: A model-based quantification on vehicular ad hoc networks with virtual machine migration. Sensors, 23(23):9485.

Tang, Y., Cheng, N., Wu, W., Wang, M., Dai, Y., and Shen, X. (2019). Delay-minimization routing for heterogeneous vanets with machine learning based mobility prediction. IEEE Transactions on Vehicular Technology, 68(4):3967–3979.

Wu, X., Zhao, S., Zhang, R., and Yang, L. (2020). Mobility prediction-based joint task assignment and resource allocation in vehicular fog computing. In 2020 IEEE Wireless Communications and Networking Conference (WCNC), pages 1–6. IEEE.
Published
2024-05-20
SILVA, Luis Guilherme et al. Unveiling the Elasticity of Virtual Machines in VANETs: A Strategy to Enhance Capacity Planning in RSUs. In: BRAZILIAN SYMPOSIUM ON COMPUTER NETWORKS AND DISTRIBUTED SYSTEMS (SBRC), 42. , 2024, Niterói/RJ. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 169-182. ISSN 2177-9384. DOI: https://doi.org/10.5753/sbrc.2024.1291.

Most read articles by the same author(s)

1 2 3 4 5 > >>