NDIST - Um Mecanismo de Filtragem de RSSI Eficiente para Algoritmos de Handoff em Redes Densas
Resumo
Em redes sem fio densas, handoffs são comuns. Os critérios para acioná-los não são definidos pelo padrão IEEE 802.11, sendo específicos para a implementação de cada fabricante. Implementações atuais de handoff geralmente usam o RSSI (Indicador de Intensidade do Sinal Recebido) como métrica de desempenho e, comumente, causam instabilidade na associação, um problema conhecido como o efeito ping-pong. Para prevenir este efeito, será proposto o NDIST, um mecanismo de filtragem de RSSI, cujo objetivo é aumentar a estabilidade de associação ocasionando baixo atraso no acionamento do handoff. Testes comparativos demonstram que o NDIST melhora a estabilidade sem gerar aumento expressivo do atraso.Referências
Alim, A., Rahman, M. M., Hossain, M. M., and Al-Nahid, A. (2010). Analysis of large-scale propagation models for mobile communications in urban area. International Journal of Computer Science and Information Security, 7(1):135–139.
Balbi, H., Passos, D. G., Carrano, R., Magalhães, L., and Albuquerque, C. V. N. (2019). A Case Study of Association Instability in Dense IEEE 802.11 Networks. In IEEE Symposium on Computers and Communications (ISCC), pages 1–6. IEEE.
Balbi, H. D., Passos, D., Carrano, R. C., Magalhães, L. C., and Albuquerque, C. V. (2020). Association stability and handoff latency tradeoff in dense IEEE 802.11 networks: A case study. Computer Communications, 159:175 – 185.
Bangolae, S., Bell, C., and Qi, E. (2006). Performance Study of Fast BSS Transition Using IEEE 802.11r. In International conference on Wireless communications and mobile computing (IWCMC), page 737–742, New York, NY, USA. Association for Computing Machinery.
Bellavista, P., Corradi, A., and Giannelli, C. (2006). Evaluating filtering strategies for decentralized handover prediction in the wireless internet. In Symposium on Computers and Communications (ISCC), pages 167–174. IEEE.
Hu, T., Xue, K., Wei, W., and Jiang, W. (2015). LENV: A new light-weighted edge network virtualization framework in software-defined wireless networks. In International Conference on Wireless Communications & Signal Processing, pages 1–6.
Huang, P.-J., Tseng, Y.-C., and Tsai, K.-C. (2006). A Fast Handoff Mechanism for IEEE 802.11 and IAPP Networks. In Vehicular Technology Conference, volume 2, pages 966–970.
IEEE (2012). 802.11-2012 IEEE standard for information technology – LAN/MAN – specific requirements – part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specification.
Kim, H.-S., Park, S.-H., Park, C.-S., Kim, J.-W., and Ko, S.-J. (2006). Fast handoff scheme for seamless multimedia service in wireless LAN. In International Conference on Research in Networking, pages 942–953. Springer.
Kim, M., Liu, Z., Parthasarathy, S., Pendarakis, D., and Yang, H. (2012). Association Control Algorithms for Handoff Frequency Minimization in Mobile Wireless Networks. Wireless Networks, 18(5):535–550.
Levis, K. (2006). RSSI is under appreciated. In Proceedings of the Third Workshop on Embedded Networked Sensors, pages 239–242.
Lotov, A. V., Bushenkov, V. A., and Kamenev, G. K. (2013). Interactive decision maps: Approximation and visualization of Pareto frontier, volume 89. Springer Science & Business Media.
Mhatre, V. and Papagiannaki, K. (2006). Using Smart Triggers for Improved User Performance in 802.11 Wireless Networks. In Proceedings of MobiSys, pages 246–259.
Mishra, A., Shin, M., and Arbaugh, W. (2003). An Empirical Analysis of the IEEE 802.11 MAC Layer Handoff Process. SIGCOMM Comput. Commun. Rev., 33(2):93–102.
Montavont, N., Blanc, A., Navas, R., Kerdoncuff, T., and Castignani, G. (2015). Handover triggering in IEEE 802.11 networks. In WoWMoM, pages 1–9.
Pu, C. and Chung, W. (2008). Mitigation of Multipath Fading Effects to Improve Indoor RSSI Performance. IEEE Sensors Journal, 8(11):1884–1886.
Raghavendra, R., Belding, E. M., Papagiannaki, K., and Almeroth, K. C. (2007). Understanding Handoffs in Large IEEE 802.11 Wireless Networks. In Proceedings of IMC, pages 333–338.
Ramani, I. and Savage, S. (2005). SyncScan: practical fast handoff for 802.11 infrastructure networks. In INFOCOM, volume 1, pages 675–684.
Rangisetti, A. K., Baldaniya, H. B., B, P. K., and Tamma, B. R. (2014). Load-aware hand-offs in software defined wireless LANs. In 10th IEEE WiMob, pages 685–690.
Sklar, B. (1997). Rayleigh fading channels in mobile digital communication systems .I. Characterization. IEEE Communications Magazine, 35(7):90–100.
Smailagic, A., Small, J., and Siewiorek, D. P. (2000). Determining user location for context aware computing through the use of a wireless LAN infrastructure. Technical report, Institute for Complex Engineered Systems Carnegie Mellon University, Pittsburgh, PA.
Vallati, C., Mingozzi, E., and Benedetto, C. (2016). Efficient handoff based on link quality prediction for video streaming in urban transport systems. Wireless Communications and Mobile Computing, 16(15):2298–2314.
Vasudevan, S., Papagiannaki, K., Diot, C., Kurose, J., and Towsley, D. (2005). Facilitating Access Point Selection in IEEE 802.11 Wireless Networks. In Proceedings of IMC, pages 293–298.
Weng, Z. and Xie, Z. (2024). Ap selection game in dense ieee 802.11 wlans. Wireless Networks, pages 1–16.
Balbi, H., Passos, D. G., Carrano, R., Magalhães, L., and Albuquerque, C. V. N. (2019). A Case Study of Association Instability in Dense IEEE 802.11 Networks. In IEEE Symposium on Computers and Communications (ISCC), pages 1–6. IEEE.
Balbi, H. D., Passos, D., Carrano, R. C., Magalhães, L. C., and Albuquerque, C. V. (2020). Association stability and handoff latency tradeoff in dense IEEE 802.11 networks: A case study. Computer Communications, 159:175 – 185.
Bangolae, S., Bell, C., and Qi, E. (2006). Performance Study of Fast BSS Transition Using IEEE 802.11r. In International conference on Wireless communications and mobile computing (IWCMC), page 737–742, New York, NY, USA. Association for Computing Machinery.
Bellavista, P., Corradi, A., and Giannelli, C. (2006). Evaluating filtering strategies for decentralized handover prediction in the wireless internet. In Symposium on Computers and Communications (ISCC), pages 167–174. IEEE.
Hu, T., Xue, K., Wei, W., and Jiang, W. (2015). LENV: A new light-weighted edge network virtualization framework in software-defined wireless networks. In International Conference on Wireless Communications & Signal Processing, pages 1–6.
Huang, P.-J., Tseng, Y.-C., and Tsai, K.-C. (2006). A Fast Handoff Mechanism for IEEE 802.11 and IAPP Networks. In Vehicular Technology Conference, volume 2, pages 966–970.
IEEE (2012). 802.11-2012 IEEE standard for information technology – LAN/MAN – specific requirements – part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specification.
Kim, H.-S., Park, S.-H., Park, C.-S., Kim, J.-W., and Ko, S.-J. (2006). Fast handoff scheme for seamless multimedia service in wireless LAN. In International Conference on Research in Networking, pages 942–953. Springer.
Kim, M., Liu, Z., Parthasarathy, S., Pendarakis, D., and Yang, H. (2012). Association Control Algorithms for Handoff Frequency Minimization in Mobile Wireless Networks. Wireless Networks, 18(5):535–550.
Levis, K. (2006). RSSI is under appreciated. In Proceedings of the Third Workshop on Embedded Networked Sensors, pages 239–242.
Lotov, A. V., Bushenkov, V. A., and Kamenev, G. K. (2013). Interactive decision maps: Approximation and visualization of Pareto frontier, volume 89. Springer Science & Business Media.
Mhatre, V. and Papagiannaki, K. (2006). Using Smart Triggers for Improved User Performance in 802.11 Wireless Networks. In Proceedings of MobiSys, pages 246–259.
Mishra, A., Shin, M., and Arbaugh, W. (2003). An Empirical Analysis of the IEEE 802.11 MAC Layer Handoff Process. SIGCOMM Comput. Commun. Rev., 33(2):93–102.
Montavont, N., Blanc, A., Navas, R., Kerdoncuff, T., and Castignani, G. (2015). Handover triggering in IEEE 802.11 networks. In WoWMoM, pages 1–9.
Pu, C. and Chung, W. (2008). Mitigation of Multipath Fading Effects to Improve Indoor RSSI Performance. IEEE Sensors Journal, 8(11):1884–1886.
Raghavendra, R., Belding, E. M., Papagiannaki, K., and Almeroth, K. C. (2007). Understanding Handoffs in Large IEEE 802.11 Wireless Networks. In Proceedings of IMC, pages 333–338.
Ramani, I. and Savage, S. (2005). SyncScan: practical fast handoff for 802.11 infrastructure networks. In INFOCOM, volume 1, pages 675–684.
Rangisetti, A. K., Baldaniya, H. B., B, P. K., and Tamma, B. R. (2014). Load-aware hand-offs in software defined wireless LANs. In 10th IEEE WiMob, pages 685–690.
Sklar, B. (1997). Rayleigh fading channels in mobile digital communication systems .I. Characterization. IEEE Communications Magazine, 35(7):90–100.
Smailagic, A., Small, J., and Siewiorek, D. P. (2000). Determining user location for context aware computing through the use of a wireless LAN infrastructure. Technical report, Institute for Complex Engineered Systems Carnegie Mellon University, Pittsburgh, PA.
Vallati, C., Mingozzi, E., and Benedetto, C. (2016). Efficient handoff based on link quality prediction for video streaming in urban transport systems. Wireless Communications and Mobile Computing, 16(15):2298–2314.
Vasudevan, S., Papagiannaki, K., Diot, C., Kurose, J., and Towsley, D. (2005). Facilitating Access Point Selection in IEEE 802.11 Wireless Networks. In Proceedings of IMC, pages 293–298.
Weng, Z. and Xie, Z. (2024). Ap selection game in dense ieee 802.11 wlans. Wireless Networks, pages 1–16.
Publicado
20/05/2024
Como Citar
BALBI, Helga D.; PASSOS, Diego; MAGALHÃES, Luiz C. S.; ALBUQUERQUE, Célio V. N..
NDIST - Um Mecanismo de Filtragem de RSSI Eficiente para Algoritmos de Handoff em Redes Densas. In: SIMPÓSIO BRASILEIRO DE REDES DE COMPUTADORES E SISTEMAS DISTRIBUÍDOS (SBRC), 42. , 2024, Niterói/RJ.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2024
.
p. 784-797.
ISSN 2177-9384.
DOI: https://doi.org/10.5753/sbrc.2024.1472.