Federated Learning Model Selection Based on Search and Pruning for Industrial Defect Detection
Abstract
Federated learning emerges as an alternative to traditional machine learning by decentralizing model training. Client devices communicate with a central server and train the defined model iteratively. The training model definition in advance, however, is a challenge that is rarely discussed. This work proposes selecting the best neural network based on a search procedure involving multiple networks and subsequent pruning of those that appear less promising during training. To do this, in a given evaluation round, the nodes send the performance results to a comparator node using the AUC-ROC metric (Area Under The Receiver Operating Characteristics Curve) for best-model selection. Our experiments use an application for detecting malfunctions in industrial equipment using the emitted sounds. The results demonstrate that the models found when performing pruning in the 5 and 10 round of training reach final AUC-ROC values of approximately 0.95 and 0.91 in the best-case scenario, respectively. These values represent an increase of up to 6.25% over federated learning without pruning and 18.75% over traditional centralized learning.
References
Beutel, D. J., Topal, T., Mathur, A., Qiu, X., Parcollet, T., de Gusmão, P. P., e Lane, N. D. (2020). Flower: A friendly federated learning research framework. arXiv preprint arXiv:2007.14390.
Bochie, K., Gilbert, M. S., Gantert, L., Barbosa, M. S., Medeiros, D. S., e Campista, M. E. M. (2021). A survey on deep learning for challenged networks: Applications and trends. Journal of Network and Computer Applications, 194:103213.
Chawla, N. V., Bowyer, K. W., Hall, L. O., e Kegelmeyer, W. P. (2002). Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research, 16:321–357.
de Souza, L. A. C., Camilo, G. F., Sammarco, M., Campista, M. E. M., e Costa, L. H. M. (2022). Aprendizado federado com agrupamento hierárquico de clientes para aumento da acurácia. In Anais do XL Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 545–558. SBC.
Fu, L., Zhang, H., Gao, G., Zhang, M., e Liu, X. (2023). Client selection in federated learning: Principles, challenges, and opportunities. IEEE Internet of Things Journal.
Gantert, L., Sammarco, M., Detyniecki, M., e Campista, M. E. M. (2021). A supervised approach for corrective maintenance using spectral features from industrial sounds. In 2021 IEEE 7th World Forum on Internet of Things (WF-IoT), pages 723–728. IEEE.
Gantert, L., Sammarco, M., Detyniecki, M., e Campista, M. E. M. (2022). Super learner ensemble for sound classification using spectral features. In 2022 IEEE Latin-American Conference on Communications (LATINCOM), pages 1–6. IEEE.
Jiang, Y., Wang, S., Valls, V., Ko, B. J., Lee, W.-H., Leung, K. K., e Tassiulas, L. (2022). Model pruning enables efficient federated learning on edge devices. IEEE Transactions on Neural Networks and Learning Systems.
Li, L., Fan, Y., Tse, M., e Lin, K.-Y. (2020). A review of applications in federated learning. Computers & Industrial Engineering, 149:106854.
Lin, R., Xiao, Y., Yang, T.-J., Zhao, D., Xiong, L., Motta, G., e Beaufays, F. (2022). Federated pruning: improving neural network efficiency with federated learning. arXiv preprint arXiv:2209.06359.
McFee, B., Raffel, C., Liang, D., Ellis, D. P., McVicar, M., Battenberg, E., e Nieto, O. (2015). librosa: Audio and music signal analysis in python. In Proceedings of the 14th python in science conference, volume 8, pages 18–25.
McMahan, B., Moore, E., Ramage, D., Hampson, S., e y Arcas, B. A. (2017). Communication-efficient learning of deep networks from decentralized data. In Artificial intelligence and statistics, pages 1273–1282. PMLR.
Natesha, B. e Guddeti, R. M. R. (2021). Fog-based intelligent machine malfunction monitoring system for industry 4.0. IEEE Transactions on Industrial Informatics, 17(12):7923–7932.
Neto, H. N., Mattos, D. M., e Fernandes, N. C. (2020). Privacidade do usuário em aprendizado colaborativo: Federated learning, da teoria à prática. Sociedade Brasileira de Computação.
Purohit, H., Tanabe, R., Ichige, K., Endo, T., Nikaido, Y., Suefusa, K., e Kawaguchi, Y. (2019). Mimii dataset: Sound dataset for malfunctioning industrial machine investigation and inspection. arXiv preprint arXiv:1909.09347.
Ramos, H. S., Maia, G., Papa, G. L., Alvim, M. S., Loureiro, A. A., Cardoso-Pereira, I., Campos, D. H., Filipakis, G., Riquetti, G., Chagas, E. T., et al. (2021). Aprendizado federado aplicado à internet das coisas. Sociedade Brasileira de Computação.
Suefusa, K., Nishida, T., Purohit, H., Tanabe, R., Endo, T., e Kawaguchi, Y. (2020). Anomalous sound detection based on interpolation deep neural network. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 271–275. IEEE.
Tao, B., Chen, C., e Chen, H. (2023). Communication efficient federated learning via channel-wise dynamic pruning. In 2023 IEEE Wireless Communications and Networking Conference (WCNC), pages 1–6. IEEE.
