Optimizing Intelligent Camera Surveillance in Smart Buildings: An SPN-based Edge-Fog Analysis

Resumo


Surveillance cameras play a pivotal role in modern security strategies, yet real-time video analysis demands substantial computational capabilities. This research employs Stochastic Petri Net (SPN) models to refine the planning and optimization of video surveillance infrastructures within intelligent buildings, leveraging Edge and Fog computing paradigms. By systematically evaluating key performance metrics such as mean response time, throughput, resource utilization, and drop probability, the proposed models inform more judicious resource allocation and scaling decisions. Our findings indicate that increasing Fog layer processing cores to 10 reduces the drop probability to around 35% at an arrival rate of 47.37 msg/ms, and maintains a mean response time below 10 ms at moderate arrival rates (up to approximately 29 msg/ms). These insights facilitate the design of more efficient, reliable, and scalable surveillance solutions, ensuring prompt incident responses and optimized resource usage within smart building environments.

Palavras-chave: Intelligent Surveillance, Edge and Fog Computing, Stochastic Petri Nets (SPN), Performance Evaluation

Referências

Borges, I., Callou, G., and Silva, F. A. (2023). Performance evaluation and energy consumption of a video surveillance system with distributed storage. In 2023 18th Iberian Conference on Information Systems and Technologies (CISTI), pages 1–6. IEEE.

Brito, C., Barbosa, V., Lima, L. N., Rocha, J. W., Araújo, J. M., Lopes, L., Rego, P. A., Sales, M., Callou, G., Fé, I., et al. (2024). Performance evaluation of a video surveillance system using stochastic petri nets for license plate detection on highways. Journal of Reliable Intelligent Environments, pages 1–12.

Chen, Z., Lai, Z., Song, C., Zhang, X., and Cheng, J. C. (2023). Smart camera placement for building surveillance using openbim and an efficient bi-level optimization approach. Journal of Building Engineering, 77:107257.

Cob-Parro, A. C., Losada-Gutiérrez, C., Marrón-Romera, M., Gardel-Vicente, A., and Bravo-Muñoz, I. (2021). Smart video surveillance system based on edge computing. Sensors, 21(9):2958.

Cui, L., Su, D., Zhou, Y., Zhang, L., Wu, Y., and Chen, S. (2020). Edge learning for surveillance video uploading sharing in public transport systems. IEEE Transactions on Intelligent Transportation Systems, 22(4):2274–2285.

Fé, I., Nguyen, T. A., Mauro, M. D., Postiglione, F., Ramos, A., Soares, A., Choi, E., Min, D., Lee, J. W., and Silva, F. A. (2024). Energy-aware dynamic response and efficient consolidation strategies for disaster survivability of cloud microservices architecture. Computing, pages 1–47.

Hurbungs, V., Bassoo, V., and Fowdur, T. (2021). Fog and edge computing: concepts, tools and focus areas. International Journal of Information Technology, 13(2):511–522.

Ibrahim, S. W. (2016). A comprehensive review on intelligent surveillance systems. Communications in Science and Technology, 1(1).

Khairuddin, M., Shahbudin, S., and Kassim, M. (2021). A smart building security system with intelligent face detection and recognition. In IOP Conference Series: Materials Science and Engineering, volume 1176, page 012030. IOP Publishing.

Khan, W. Z., Ahmed, E., Hakak, S., Yaqoob, I., and Ahmed, A. (2019). Edge computing: A survey. Future Generation Computer Systems, 97:219–235.

Kim, W., Kwak, A., Yoo, B., and Ko, H. (2024). IPFS viewer: IoT surveillance camera system using IPFS and MQTT. In 2024 IEEE International Conference on Consumer Electronics (ICCE), pages 1–6. IEEE.

Kim, Y., and Jeong, J. (2023). A simulation-based approach to evaluate the performance of automated surveillance camera systems for smart cities. Applied Sciences, 13(19):10682.

Kong, L., Tan, J., Huang, J., Chen, G., Wang, S., Jin, X., Zeng, P., Khan, M., and Das, S. K. (2022). Edge-computing-driven Internet of Things: A survey. ACM Computing Surveys, 55(8):1–41.

Laricchia, F. (2024). Video surveillance camera market size worldwide from 2019 to 2027 (in billion U.S. dollars). Accessed on 08/25/2024.

Laroui, M., Nour, B., Moungla, H., Cherif, M. A., Afifi, H., and Guizani, M. (2021). Edge and fog computing for IoT: A survey on current research activities & future directions. Computer Communications, 180:210–231.

Patwal, A., Diwakar, M., Tripathi, V., and Singh, P. (2023). Crowd counting analysis using deep learning: A critical review. Procedia Computer Science, 218:2448–2458.

Piza, E. L., Welsh, B. C., Farrington, D. P., and Thomas, A. L. (2019). CCTV surveillance for crime prevention: A 40-year systematic review with meta-analysis. Criminology & Public Policy, 18(1):135–159.

Rodrigues, L., Neto, F., Gonçalves, G., Soares, A., and Silva, F. A. (2021). Performance evaluation of smart cooperative traffic lights in VANETs. International Journal of Computational Science and Engineering, 24(3):276–289.

Sabino, A., Lima, L. N., Brito, C., Feitosa, L., Caetano, M. F., Barreto, P. S., and Silva, F. A. (2024). Forest fire monitoring system supported by unmanned aerial vehicles and edge computing: A performance evaluation using Petri nets. Cluster Computing, pages 1–21.

Saini, D. K., Ahir, D., and Ganatra, A. (2016). Techniques and challenges in building intelligent systems: Anomaly detection in camera surveillance. In Proceedings of the First International Conference on Information and Communication Technology for Intelligent Systems: Volume 2, pages 11–21. Springer.

Sharifi, M., Abhari, A., and Taghipour, S. (2021). A queueing model for video analytics applications of smart cities. In 2021 Winter Simulation Conference (WSC), pages 1–10. IEEE.

Silva, L. G., Brito, C., Cardoso, I., Sabino, A., Lima, L. N., Gonçalves, G., Rocha Filho, G. P., Fé, I., and Silva, F. A. (2024). Desvendando a elasticidade de máquinas virtuais em VANETs: Uma estratégia para aperfeiçoar o planejamento de capacidade em RSUs. In Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC), pages 169–182. SBC.

Singh, P., and Singh, K. D. (2023). Fog-centric intelligent surveillance system: A novel approach for effective and efficient surveillance. In 2023 International Conference on Advancement in Computation & Computer Technologies (InCACCT), pages 762–766. IEEE.

Srirama, S. N. (2024). A decade of research in fog computing: Relevance, challenges, and future directions. Software: Practice and Experience, 54(1):3–23.

Usmanova, N., Mirzayev, D., Ergashev, F., and Yunusova, D. (2023). Field monitoring application based on video surveillance: Evaluation of system performance. In E3S Web of Conferences, volume 443, page 06016. EDP Sciences.

Zhou, H., Hu, F., Juras, M., Mehta, A. B., and Deng, Y. (2021). Real-time video streaming and control of cellular-connected UAV system: Prototype and performance evaluation. IEEE Wireless Communications Letters, 10(8):1657–1661.
Publicado
19/05/2025
ARAÚJO, José Miqueias et al. Optimizing Intelligent Camera Surveillance in Smart Buildings: An SPN-based Edge-Fog Analysis. In: SIMPÓSIO BRASILEIRO DE REDES DE COMPUTADORES E SISTEMAS DISTRIBUÍDOS (SBRC), 43. , 2025, Natal/RN. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2025 . p. 15-28. ISSN 2177-9384. DOI: https://doi.org/10.5753/sbrc.2025.5744.

Artigos mais lidos do(s) mesmo(s) autor(es)

1 2 > >>