Uma Perspectiva Analítica para Avaliação de Desempenho no Aprendizado Federado
Resumo
Implementar e avaliar o desempenho de soluções de Aprendizado Federado (FL) em ambientes reais ou simulados apresenta desafios significativos, não apenas devido a limitações de escalabilidade, tempo e custo, mas também à heterogeneidade estatística e sistêmica, incluindo restrições de rede e problemas de desempenho, que são difíceis de reproduzir em cenários experimentais ou simulados. Nesse contexto, os modelos analíticos emergem como uma abordagem poderosa para compreender o comportamento de sistemas de FL em larga escala e densos. Esses modelos permitem uma análise mais detalhada e eficiente, ao integrar cenários densos com diferentes opções de conectividade, por exemplo, intermitente, e incorporar a variabilidade estocástica em transições e estados, capturando de forma realista a complexa dinâmica de sistemas distribuídos. Este artigo apresenta a modelagem de Stochastic Petri Net (SPN) como uma abordagem analítica complementar aos simuladores de FL tradicionais em cenários dinâmicos e densos. O modelo SPN permite a simulação detalhada da dinâmica FL principal, incluindo participação assíncrona, seleção de clientes e utilização de recursos. A aplicação do modelo de SPN para análise de FL é ilustrada, calibrada e validada com um estudo de caso utilizando dados de um experimento real. Os resultados fornecem insights importantes para a otimização de sistemas distribuídos em diferentes domínios.
Palavras-chave:
aprendizado federado, análise de desempenho, redes de Petri estocásticas
Referências
Albelaihi, R., Sun, X., Craft, W. D., Yu, L., and Wang, C. (2021). Adaptive participant selection in heterogeneous federated learning. In IEEE Global Communications Conference (GLOBECOM), pages 1–6. IEEE.
Banabilah, S., Aloqaily, M., Alsayed, E., Malik, N., and Jararweh, Y. (2022). Federated learning review: Fundamentals, enabling technologies, and future applications. Information Processing & Management, 59(6):103061.
Beutel, A., Topcuoglu, E., Ozisik, C., and Steiger, E. (2020). Flower: A friendly federated learning research framework. In Systems and Machine Learning Conference.
Bonawitz, K. (2019). Towards federated learning at scale: System design. arXiv preprint arXiv:1902.01046.
DeGlopper, D. R. (1992). The art of computer systems performance analysis: Techniques for experimental design, measurement, simulation and modeling. By Raj Jain. New York: John Wiley and Sons, 1991. pp. 720. (Hardcover). International Journal of Legal Information, 20(1):63–64.
Du, M., Zheng, H., Feng, X., Chen, Y., and Zhao, T. (2022). Decentralized federated learning with Markov chain based consensus for industrial IoT networks. IEEE Transactions on Industrial Informatics, 19(4):6006–6015.
Gilmer, M., Sohl-Dickstein, J., Schoenholz, S. S., Bauer, M. S., and Gilmer, J. (2021). Fedjax: A scalable JAX framework for federated learning. arXiv preprint arXiv:2108.02117.
Joshi, A., Agarwal, A., Agarwal, D., Murthy, B., Chaudhary, M., Agarwal, S., Sekar, A., Choudhary, D., and Girdhar, R. (2021). Flute: A scalable federated learning simulator. arXiv preprint arXiv:2110.06203.
Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode, G., Cummings, R., et al. (2021). Advances and open problems in federated learning. Foundations and Trends® in Machine Learning, 14(1–2):1–210.
Kholod, I., Yanaki, E., Fomichev, D., Shalugin, E., Novikova, E., Filippov, E., and Nordlund, M. (2020). Open-source federated learning frameworks for IoT: A comparative review and analysis. Sensors, 21(1):167.
Kim, M. G., De M Bastos, C. P. M. J., Park, J., Hajiesmaili, M., Oh, S., Ma, M., and Kim, M. (2021). FLSim: Scalable and extensible federated learning simulator. arXiv preprint arXiv:2107.03309.
Li, Q., Wen, Z., Wu, Z., Hu, S., Wang, N., Li, Y., Liu, X., and He, B. (2021). A survey on federated learning systems: Vision, hype and reality for data privacy and protection. IEEE Transactions on Knowledge and Data Engineering, 35(4):3347–3366.
Li, T., Sahu, A. K., Talwalkar, A., and Smith, V. (2020). Federated learning: Challenges, methods, and future directions. IEEE Signal Processing Magazine, 37(3):50–60.
Liu, T., Wang, H., and Ma, M. (2024). Federated learning with efficient aggregation via Markov decision process in edge networks. Mathematics, 12(6):920.
Maciel, P. R. M. (2023). Performance, reliability, and availability evaluation of computational systems, Volume 2: Reliability, availability modeling, measuring, and data analysis. Chapman and Hall/CRC.
Pu, J., Fu, X., Dong, H., Zhang, P., and Liu, L. (2024). Dynamic adaptive federated learning on local long-tailed data. IEEE Transactions on Services Computing.
Savazzi, S., Nicoli, M., Bennis, M., Kianoush, S., and Barbieri, L. (2021). Opportunities of federated learning in connected, cooperative, and automated industrial systems. IEEE Communications Magazine, 59(2):16–21.
Silva, B., Matos, R., Callou, G., Figueiredo, J., Oliveira, D., Ferreira, J., Dantas, J., Lobo, A., Alves, V., and Maciel, P. (2015). Mercury: An integrated environment for performance and dependability evaluation of general systems. In 45th Dependable Systems and Networks Conference (DSN), pages 1–4.
TensorFlow Federated (2021). TensorFlow Federated: Machine Learning on Decentralized Data.
Turgay, S. (2022). Blockchain management and federated learning adaptation on healthcare management system. International Journal of Intelligent Systems and Applications, 14(5):1.
Wen, J., Zhang, Z., Lan, Y., Cui, Z., Cai, J., and Zhang, W. (2023). A survey on federated learning: Challenges and applications. International Journal of Machine Learning and Cybernetics, 14(2):513–535.
Wilhelmi, F., Giupponi, L., and Dini, P. (2021). Blockchain-enabled server-less federated learning. arXiv preprint arXiv:2112.07938, pages 1–14.
Banabilah, S., Aloqaily, M., Alsayed, E., Malik, N., and Jararweh, Y. (2022). Federated learning review: Fundamentals, enabling technologies, and future applications. Information Processing & Management, 59(6):103061.
Beutel, A., Topcuoglu, E., Ozisik, C., and Steiger, E. (2020). Flower: A friendly federated learning research framework. In Systems and Machine Learning Conference.
Bonawitz, K. (2019). Towards federated learning at scale: System design. arXiv preprint arXiv:1902.01046.
DeGlopper, D. R. (1992). The art of computer systems performance analysis: Techniques for experimental design, measurement, simulation and modeling. By Raj Jain. New York: John Wiley and Sons, 1991. pp. 720. (Hardcover). International Journal of Legal Information, 20(1):63–64.
Du, M., Zheng, H., Feng, X., Chen, Y., and Zhao, T. (2022). Decentralized federated learning with Markov chain based consensus for industrial IoT networks. IEEE Transactions on Industrial Informatics, 19(4):6006–6015.
Gilmer, M., Sohl-Dickstein, J., Schoenholz, S. S., Bauer, M. S., and Gilmer, J. (2021). Fedjax: A scalable JAX framework for federated learning. arXiv preprint arXiv:2108.02117.
Joshi, A., Agarwal, A., Agarwal, D., Murthy, B., Chaudhary, M., Agarwal, S., Sekar, A., Choudhary, D., and Girdhar, R. (2021). Flute: A scalable federated learning simulator. arXiv preprint arXiv:2110.06203.
Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode, G., Cummings, R., et al. (2021). Advances and open problems in federated learning. Foundations and Trends® in Machine Learning, 14(1–2):1–210.
Kholod, I., Yanaki, E., Fomichev, D., Shalugin, E., Novikova, E., Filippov, E., and Nordlund, M. (2020). Open-source federated learning frameworks for IoT: A comparative review and analysis. Sensors, 21(1):167.
Kim, M. G., De M Bastos, C. P. M. J., Park, J., Hajiesmaili, M., Oh, S., Ma, M., and Kim, M. (2021). FLSim: Scalable and extensible federated learning simulator. arXiv preprint arXiv:2107.03309.
Li, Q., Wen, Z., Wu, Z., Hu, S., Wang, N., Li, Y., Liu, X., and He, B. (2021). A survey on federated learning systems: Vision, hype and reality for data privacy and protection. IEEE Transactions on Knowledge and Data Engineering, 35(4):3347–3366.
Li, T., Sahu, A. K., Talwalkar, A., and Smith, V. (2020). Federated learning: Challenges, methods, and future directions. IEEE Signal Processing Magazine, 37(3):50–60.
Liu, T., Wang, H., and Ma, M. (2024). Federated learning with efficient aggregation via Markov decision process in edge networks. Mathematics, 12(6):920.
Maciel, P. R. M. (2023). Performance, reliability, and availability evaluation of computational systems, Volume 2: Reliability, availability modeling, measuring, and data analysis. Chapman and Hall/CRC.
Pu, J., Fu, X., Dong, H., Zhang, P., and Liu, L. (2024). Dynamic adaptive federated learning on local long-tailed data. IEEE Transactions on Services Computing.
Savazzi, S., Nicoli, M., Bennis, M., Kianoush, S., and Barbieri, L. (2021). Opportunities of federated learning in connected, cooperative, and automated industrial systems. IEEE Communications Magazine, 59(2):16–21.
Silva, B., Matos, R., Callou, G., Figueiredo, J., Oliveira, D., Ferreira, J., Dantas, J., Lobo, A., Alves, V., and Maciel, P. (2015). Mercury: An integrated environment for performance and dependability evaluation of general systems. In 45th Dependable Systems and Networks Conference (DSN), pages 1–4.
TensorFlow Federated (2021). TensorFlow Federated: Machine Learning on Decentralized Data.
Turgay, S. (2022). Blockchain management and federated learning adaptation on healthcare management system. International Journal of Intelligent Systems and Applications, 14(5):1.
Wen, J., Zhang, Z., Lan, Y., Cui, Z., Cai, J., and Zhang, W. (2023). A survey on federated learning: Challenges and applications. International Journal of Machine Learning and Cybernetics, 14(2):513–535.
Wilhelmi, F., Giupponi, L., and Dini, P. (2021). Blockchain-enabled server-less federated learning. arXiv preprint arXiv:2112.07938, pages 1–14.
Publicado
19/05/2025
Como Citar
SILVA, Francisco Airton; SOUZA, Allan M. de; ALMEIDA, Iago; CERQUEIRA, Eduardo; BITTENCOURT, Luiz Fernando; ROSÁRIO, Denis.
Uma Perspectiva Analítica para Avaliação de Desempenho no Aprendizado Federado. In: SIMPÓSIO BRASILEIRO DE REDES DE COMPUTADORES E SISTEMAS DISTRIBUÍDOS (SBRC), 43. , 2025, Natal/RN.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 57-70.
ISSN 2177-9384.
DOI: https://doi.org/10.5753/sbrc.2025.5813.