Re-identificação de trajetórias de veículos baseada na caracterização das preferências de caminho

  • Ekler Paulino Mattos Universidade Federal de Minas Gerais
  • Augusto Cesar Souza Araujo Domingues Universidade Federal de Minas Gerais
  • Antonio Alfredo Ferreira Loureiro UFMG


Vehicular mobility traces are datasets of vehicles location in a region with high spatiotemporal precision. Access to this sensitive information can threaten the safety and privacy of drivers, such as analyzing this data makes it possible to discover other contextual and latent information, such as users daily home routes or workplaces address. In this way, many obfuscation and anonymization techniques have been proposed to mitigate the problem of user location privacy. In this work, we analyze an anonymization technique called mix-zone, where selected urban regions promote the simultaneous anonymization of vehicles by changing their pseudonym. We show how information about drivers behavior in a city, such as their road preferences, can be used to re-identify their trajectories. We present a simple and efficient re-identification technique that uses only two geo-referenced points as input data. We validate our technique with a real dataset of taxi cabs, being able to reidentify up to 95% of anonymised trajectories.

Palavras-chave: Redes Veiculares, Mobilidade, Privacidade


Arain, Q. A., Memon, I., Deng, Z., Memon, M. H., Mangi, F. A., Zubedi, A. (2018). Location monitoring approach: multiple mix-zones with location privacy protection based on traffic flow over road networks. Multimedia Tools and Applications, 77(5), 5563–5607.

Beresford, A. R., Stajano, F. (2003). Location privacy in pervasive computing. IEEE Pervasive computing(1), 46–55.

Beresford, A. R., Stajano, F. (2004). Mix zones: User privacy in location-aware services. In Pervasive computing and communications workshops, 2004. proceedings of the second ieee annual conference on (pp. 127–131).

Chang, S., Li, C., Zhu, H., Lu, T., Li, Q. (2018). Revealing privacy vulnerabilities of anonymous trajectories. IEEE Transactions on Vehicular Technology.

Chaum, D. L. (1981). Untraceable electronic mail, return addresses, and digital pseudonyms. Communications of the ACM, 24(2), 84–90.

Chen, Z., Fu, Y., Zhang, M., Zhang, Z., Li, H. (2018). A flexible mix-zone selection scheme towards trajectory privacy protection. In 2018 17th ieee international conference on trust, security and privacy in computing and communications/12th ieee international conference on big data science and engineering (trustcom/bigdatase) (pp. 1180–1186).

Chow, C.-Y., Mokbel, M. F. (2011). Trajectory privacy in location-based services and data publication. ACM Sigkdd Explorations Newsletter, 13(1), 19–29.

De Montjoye, Y.-A., Hidalgo, C. A., Verleysen, M., Blondel, V. D. (2013). Unique in the crowd: The privacy bounds of human mobility. Scientific reports, 3, 1376.

Domingues, A. C., Silva, F. A., Loureiro, A. A. (2018). Space and time matter: An analysis about route selection in mobility traces. In 2018 ieee symposium on computers and communications (iscc) (pp. 00958–00963).

Dubuisson, M.-P., Jain, A. K. (1994). A modified hausdorff distance for object matching. In Proceedings of 12th international conference on pattern recognition (pp. 566– 568).

Freudiger, J., Raya, M., Félegyh´azi, M., Papadimitratos, P., Hubaux, J.-P. (2007). Mixzones for location privacy in vehicular networks. In Acm workshop on wireless networking for intelligent transportation systems (win-its).

Hoque, M. A., Hong, X., Dixon, B. (2012). Analysis of mobility patterns for urban taxi cabs. In Computing, networking and communications (icnc), 2012 international conference on (pp. 756–760).

Krumm, J. (2009). A survey of computational location privacy. Personal and Ubiquitous Computing, 13(6), 391–399.

Liu, B., Zhou, W., Zhu, T., Gao, L., Xiang, Y. (2018). Location privacy and its applications: A systematic study. IEEE Access, 6, 17606–17624.

Matheson, R. (2018). The privacy risks of compiling mobility data. Retrieved 2018-12-07, from -mobility-data-1207

Piorkowski, M., Sarafijanovic-Djukic, N., Grossglauser, M. (2009, February).

CRAWDAD dataset epfl/mobility (v. 2009-02-24). Downloaded from doi: 10.15783/C7J010

Primault, V., Boutet, A., Mokhtar, S. B., Brunie, L. (2018). The long road to computational location privacy: A survey. IEEE Communications Surveys & Tutorials.

Rossi, L., Walker, J., Musolesi, M. (2015). Spatio-temporal techniques for user identification by means of gps mobility data. EPJ Data Science, 4(1), 11.

Sekara, V., Mones, E., Jonsson, H. (2018). Temporal limits of privacy in human behavior. arXiv preprint arXiv:1806.03615.

Sui, P., Wo, T., Tianyu, Z., Li, X. (2013). Privacy-preserving trajectory publication against parking point attacks. 2013 IEEE 10th International Conference on Ubiquitous Intelligence and Computing and 2013 IEEE 10th International Conference on Autonomic and Trusted Computing.

Tan, Z., Wang, C., Fu, X., Cui, J., Jiang, C., Han, W. (2017). Re-identification of vehicular location-based metadata. ICST Trans. Security Safety, 4(11), e1.

Wernke, M., Skvortsov, P., D¨urr, F., Rothermel, K. (2014). A classification of location privacy attacks and approaches. Personal and ubiquitous computing, 18(1), 163– 175.

Zan, B., Sun, Z., Gruteser, M., Ban, X. (2013). Linking anonymous location traces through driving characteristics. In Proceedings of the third acm conference on data and application security and privacy (pp. 293–300).
Como Citar

Selecione um Formato
MATTOS, Ekler Paulino; DOMINGUES, Augusto Cesar Souza Araujo; ALFREDO FERREIRA LOUREIRO, Antonio . Re-identificação de trajetórias de veículos baseada na caracterização das preferências de caminho. In: SIMPÓSIO BRASILEIRO DE REDES DE COMPUTADORES E SISTEMAS DISTRIBUÍDOS (SBRC), 37. , 2019, Gramado. Anais do XXXVII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos. Porto Alegre: Sociedade Brasileira de Computação, aug. 2019 . p. 820-833. ISSN 2177-9384. DOI: