The Profusion of Information Systems to Combat the COVID-19 Pandemic: A Systematic Mapping of the State of the Art and Brazilian Challenges of Technological Production

  • Sandro Luis Freire de Castro Silva UNIRIO
  • Maria Augusta Silveira Netto Nunes UNIRIO
  • Marcelo Fornanzin Fiocruz
  • Rodrigo Pereira dos Santos UNIRIO

Resumo


With the arrival of COVID-19, the scientific community was mobilized, not only in researches in the biomedical field but also in searching for ways to support professionals working on the front lines of fighting the virus. In the context of information systems (IS), several systems were developed to contribute to this collective effort. In this study, we provide an overview of the profusion of systems designed to support the fight against COVID-19. To achieve this goal, a systematic mapping of the state of art was carried out in patent documents in 2020. The study compared the national technological production to the international scenario and listed the main challenges regarding technological production during COVID-19.

Palavras-chave: COVID-19, Health Information Systems, Technological Production

Referências

Anthony Jnr. Bokolo. 2021. Exploring the adoption of telemedicine and virtual software for care of outpatients during and after COVID-19 pandemic. Irish Journal of Medical Science (1971 -) 190, 1 (01 Feb 2021), 1–10. https://doi.org/10.1007/s11845-020-02299-z

Clodis Boscarioli, Renata Mendes Araujo, Maciel, and Rita Suzana. 2017. I GranDSI-BR. Special Committee on Information Systems (CE-SI). 184 pages.

Brasil. 1970. Lei nº 5.648, de 11 de dezembro de 1970. Diário Oficial da República Federativa do Brasil (1970). http://www.planalto.gov.br/ccivil_03/leis/l5648.htm

Brasil. 1996. Lei nº 9.279, de 14 de maio de 1996. Diário Oficial da República Federativa do Brasil (1996). http://www.planalto.gov.br/ccivil_03/leis/l9279.htm

Grupo Interministerial de Propriedade Intelectual (GIPI). 2020. Estratégia Nacional de Propriedade Intelectual. (2020).

Swapnili Karmore, Rushikesh Bodhe, Fadi Al-Turjman, R Lakshmana Kumar, and Sofia Pillai. 2020. IoT Based Humanoid Software for Identification and Diagnosis of Covid-19 Suspects. IEEE Sensors Journal (2020), 1–1. https://doi.org/10.1109/JSEN.2020.3030905.

Martin Kitchener. 2002. Mobilizing the Logic of Managerialism in Professional Fields: The Case of Academic Health Centre Mergers. Organization Studies 23, 3 (2002), 391–420. https://doi.org/10.1177/0170840602233004

Raquel Martins Lana, Flávio Codeço Coelho, Marcelo Ferreira da Costa Gomes, Oswaldo Gonçalves Cruz, Leonardo Soares Bastos, Daniel Antunes Maciel Villela, and Cláudia Torres Codeço. 2020. Emergência do novo coronavírus (SARS-CoV2) e o papel de uma vigilância nacional em saúde oportuna e efetiva. Cadernos de Saúde Pública 36 (Mar 2020). https://doi.org/10.1590/0102-311x00019620

Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. 2015. Guidelines for conducting systematic mapping studies in software engineering: An update. Information and Software Technology 64 (2015), 1–18. https://doi.org/10.1016/jinfsof.2015.03.007.

Katia Romero Felizardo Scannavino, Elisa Yumi Nakagawa, Sandra Camargo Pinto Ferraz Fabbri, and Fabiano Cutigi Ferrari. 2017. Revisão Sistemática da Literatura em Engenharia de Software: teoria e prática. Elsevier.

Icaro Dantas Silva, Maria Augusta Silveira Netto Nunes, Ricardo Carvalho Rodrigues, Rita Pinheiro Machado, and Arlan Clecio Santos. 2018. Almanaque para Popularização da Ciência da Computação (série 6 ed.). Vol. Volumes 7 ao 10- Mapeamento Sistemático. Sociedade Brasileira de Computação – SBC. 32 pages.

Yolande Witman, Gerhard A.C. Smid, Pauline L. Meurs, and Dick L. Willems. 2011. Doctor in the lead: balancing between two worlds. Organization 18, 4 (2011), 477–495. https://doi.org/10.1177/1350508410380762

Hai-Tao Zhang, Jin-Song Zhang, Hai-Hua Zhang, Yan-Dong Nan, Ying Zhao, En-Qing Fu, Yong-Hong Xie, Wei Liu, Wang-Ping Li, Hong-Jun Zhang, Hua Jiang, Chun-Mei Li, Yan-Yan Li, Rui-Na Ma, Shao-Kang Dang, Bo-Bo Gao, Xi-Jing Zhang, and Tao Zhang. 2020. Automated detection and quantification of COVID-19 pneumonia: CT imaging analysis by a deep learning-based software. European journal of nuclear medicine and molecular imaging 47, 11 (Oct 2020), 2525–2532. https://doi.org/10.1007/s00259-020-04953-1
Publicado
07/06/2021
SILVA, Sandro Luis Freire de Castro; NUNES, Maria Augusta Silveira Netto; FORNANZIN, Marcelo; DOS SANTOS, Rodrigo Pereira. The Profusion of Information Systems to Combat the COVID-19 Pandemic: A Systematic Mapping of the State of the Art and Brazilian Challenges of Technological Production. In: SIMPÓSIO BRASILEIRO DE SISTEMAS DE INFORMAÇÃO (SBSI), 17. , 2021, Uberlândia. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2021 .

##plugins.generic.recommendByAuthor.heading##

1 2 > >>