Primary Deposition: Ensuring the First Connection of Vehicles to Fixed Infrastructure within a Determined Time
Abstract
This work presents a new approach to the allocation of communication infrastructure for vehicular networks. The goal is to maximize the number of vehicles having their first contact with the infrastructure within a predefined time limit. The application of this strategy allows for the identification of traffic entry points in the vehicular network, which are essential for controlling the capacity of the road system and the communication system. In terms of traffic and vehicular network management, entry points are locations where traffic monitoring systems can be implemented to collect real-time data and readjust the network in response to changes in vehicle flow. The results demonstrate that the Primary Deposition strategy can increase the number of vehicles reaching a coverage area when compared to the intuitive strategy of allocating communication units at points with the highest vehicle flow.References
Bastos, A. V., Silva, C. M., and da Silva, D. C. (2018). Assisted routing algorithm for d2d communication in 5g wireless networks. In 2018 Wireless Days (WD), pages 28–30.
Bazzi, A., Masini, B. M., and Andrisano, O. (2011). On the frequent acquisition of small data through rach in umts for its applications. IEEE Transactions on Vehicular Technology, 60(7):2914–2926.
Cataldi, P. and Harri, J. (2011). User/operator utility-based infrastructure deployment strategies for vehicular networks. In Vehicular Technology Conference (VTC Fall), 2011 IEEE, pages 1–5.
Guidoni, D. L., Gottsfritz, E. N., Meneguette, R. I., Silva, C. M., Filho, G. P. R., and Souza, F. S. H. (2022). Toward an efficient data dissemination protocol for vehicular ad-hoc networks. IEEE Access, 10:123711–123722.
Lu, N., Cheng, N., Zhang, N., Shen, X., and Mark, J. W. (2014). Connected vehicles: Solutions and challenges. IEEE internet of things journal, 1(4):289–299.
Resende, M. G. and Ribeiro, C. C. (2016). Optimization by GRASP. Springer.
Silva, C. M., Aquino, A. L. L., and Meira Jr, W. (2014). Design of roadside infrastructure for information dissemination in vehicular networks. In Network Operations and Management Symposium (NOMS), 2014 IEEE, pages 1–8.
Silva, C. M., Aquino, A. L. L., and Meira, Jr, W. (2015). Deployment of roadside units based on partial mobility information. Computer Communications, 60(0):28 – 39.
Silva, C. M., Masini, B. M., Ferrari, G., and Thibault, I. (2017a). A Survey on Infrastructure-Based Vehicular Networks. Mobile Information Systems, 2017, Article ID 6123868:28–56.
Silva, C. M., Meira, W., and Sarubbi, J. F. M. (2016). Non-intrusive planning the roadside infrastructure for vehicular networks. IEEE Transactions on Intelligent Transportation Systems, 17(4):938–947.
Silva, C. M., Santos, L. A. L., Sumika, F. S. H., Mokhtari, S., Guidoni, D. L., and Nogueira, J. M. S. (2021). Omega deployment: Designing the communication roadside infrastructure for vehicles ensuring minimum qos levels of connectivity during fluctuations of the vehicles flow. In 2021 IEEE Latin-American Conference on Communications (LATINCOM), pages 1–6.
Silva, C. M., Sarubbi, J. F. M., Mokhtari, S., Santos, L. A. L., Silva, L. D., Souza, F. S. H., Guidoni, D. L., and Nogueira, J. M. S. (2023). Rage: A novel strategy for solving non-polynomial problems through the random generation of solutions and incremental reduction of the number of candidates: A case study applied to the design of the network infrastructure for connected vehicles. Expert Systems with Applications, 213:118900.
Silva, C. M., Silva, F. A., Sarubbi, J. F., Oliveira, T. R., Meira Jr, W., and Nogueira, J. M. S. (2017b). Designing mobile content delivery networks for the Internet of vehicles. Vehicular Communications, 8:45 – 55. Internet of Vehicles.
Silva, C. M., Silva, L. D., Santos, L. A. L., Sarubbi, J. F. M., and Pitsillides, A. (2019). Broadening understanding on managing the communication infrastructure in vehicular networks: Customizing the coverage using the delta network. Future Internet, 11(1).
Swain, P., Christophorou, C., Bhattacharjee, U., Silva, C. M., and Pitsillides, A. (2018). Selection of ue-based virtual small cell base stations using affinity propagation clustering. In 2018 14th International Wireless Communications & Mobile Computing Conference (IWCMC), pages 1104–1109. IEEE.
Trullols, O., Fiore, M., Casetti, C., Chiasserini, C.-F., and Ordinas, J. B. (2010). Planning roadside infrastructure for information dissemination in intelligent transportation systems. Computer Communications, 33(4):432–442.
Uppoor, S. and Fiore, M. (2012). A large-scale vehicular mobility dataset of the Cologne urban area. In 14èmes Rencontres Francophones sur les Aspects Algorithmiques des Télécommunications (AlgoTel), pages 1–4, Hérault, France, France.
Uppoor, S., Trullols-Cruces, O., Fiore, M., and Barcelo-Ordinas, J. M. (2014). Generation and analysis of a large-scale urban vehicular mobility dataset. IEEE Transactions on Mobile Computing, 13(5):1061–1075.
Zheng, Z., Sinha, P., and Kumar, S. (2009). Alpha coverage: Bounding the interconnection gap for vehicular internet access. In IEEE INFOCOM 2009, pages 2831–2835. IEEE.
Bazzi, A., Masini, B. M., and Andrisano, O. (2011). On the frequent acquisition of small data through rach in umts for its applications. IEEE Transactions on Vehicular Technology, 60(7):2914–2926.
Cataldi, P. and Harri, J. (2011). User/operator utility-based infrastructure deployment strategies for vehicular networks. In Vehicular Technology Conference (VTC Fall), 2011 IEEE, pages 1–5.
Guidoni, D. L., Gottsfritz, E. N., Meneguette, R. I., Silva, C. M., Filho, G. P. R., and Souza, F. S. H. (2022). Toward an efficient data dissemination protocol for vehicular ad-hoc networks. IEEE Access, 10:123711–123722.
Lu, N., Cheng, N., Zhang, N., Shen, X., and Mark, J. W. (2014). Connected vehicles: Solutions and challenges. IEEE internet of things journal, 1(4):289–299.
Resende, M. G. and Ribeiro, C. C. (2016). Optimization by GRASP. Springer.
Silva, C. M., Aquino, A. L. L., and Meira Jr, W. (2014). Design of roadside infrastructure for information dissemination in vehicular networks. In Network Operations and Management Symposium (NOMS), 2014 IEEE, pages 1–8.
Silva, C. M., Aquino, A. L. L., and Meira, Jr, W. (2015). Deployment of roadside units based on partial mobility information. Computer Communications, 60(0):28 – 39.
Silva, C. M., Masini, B. M., Ferrari, G., and Thibault, I. (2017a). A Survey on Infrastructure-Based Vehicular Networks. Mobile Information Systems, 2017, Article ID 6123868:28–56.
Silva, C. M., Meira, W., and Sarubbi, J. F. M. (2016). Non-intrusive planning the roadside infrastructure for vehicular networks. IEEE Transactions on Intelligent Transportation Systems, 17(4):938–947.
Silva, C. M., Santos, L. A. L., Sumika, F. S. H., Mokhtari, S., Guidoni, D. L., and Nogueira, J. M. S. (2021). Omega deployment: Designing the communication roadside infrastructure for vehicles ensuring minimum qos levels of connectivity during fluctuations of the vehicles flow. In 2021 IEEE Latin-American Conference on Communications (LATINCOM), pages 1–6.
Silva, C. M., Sarubbi, J. F. M., Mokhtari, S., Santos, L. A. L., Silva, L. D., Souza, F. S. H., Guidoni, D. L., and Nogueira, J. M. S. (2023). Rage: A novel strategy for solving non-polynomial problems through the random generation of solutions and incremental reduction of the number of candidates: A case study applied to the design of the network infrastructure for connected vehicles. Expert Systems with Applications, 213:118900.
Silva, C. M., Silva, F. A., Sarubbi, J. F., Oliveira, T. R., Meira Jr, W., and Nogueira, J. M. S. (2017b). Designing mobile content delivery networks for the Internet of vehicles. Vehicular Communications, 8:45 – 55. Internet of Vehicles.
Silva, C. M., Silva, L. D., Santos, L. A. L., Sarubbi, J. F. M., and Pitsillides, A. (2019). Broadening understanding on managing the communication infrastructure in vehicular networks: Customizing the coverage using the delta network. Future Internet, 11(1).
Swain, P., Christophorou, C., Bhattacharjee, U., Silva, C. M., and Pitsillides, A. (2018). Selection of ue-based virtual small cell base stations using affinity propagation clustering. In 2018 14th International Wireless Communications & Mobile Computing Conference (IWCMC), pages 1104–1109. IEEE.
Trullols, O., Fiore, M., Casetti, C., Chiasserini, C.-F., and Ordinas, J. B. (2010). Planning roadside infrastructure for information dissemination in intelligent transportation systems. Computer Communications, 33(4):432–442.
Uppoor, S. and Fiore, M. (2012). A large-scale vehicular mobility dataset of the Cologne urban area. In 14èmes Rencontres Francophones sur les Aspects Algorithmiques des Télécommunications (AlgoTel), pages 1–4, Hérault, France, France.
Uppoor, S., Trullols-Cruces, O., Fiore, M., and Barcelo-Ordinas, J. M. (2014). Generation and analysis of a large-scale urban vehicular mobility dataset. IEEE Transactions on Mobile Computing, 13(5):1061–1075.
Zheng, Z., Sinha, P., and Kumar, S. (2009). Alpha coverage: Bounding the interconnection gap for vehicular internet access. In IEEE INFOCOM 2009, pages 2831–2835. IEEE.
Published
2024-05-20
How to Cite
SANTOS, Leonardo A. L.; SILVA, Cristiano M.; SARUBBI, João F. M.; SILVA, Luciana Lourdes; CARVALHO, Frederico Chaves; REIS, Luís H. C.; NOGUEIRA, José Marcos Silva.
Primary Deposition: Ensuring the First Connection of Vehicles to Fixed Infrastructure within a Determined Time. In: BRAZILIAN SYMPOSIUM ON COMPUTER NETWORKS AND DISTRIBUTED SYSTEMS (SBRC), 42. , 2024, Niterói/RJ.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2024
.
p. 253-266.
ISSN 2177-9384.
DOI: https://doi.org/10.5753/sbrc.2024.1310.
