Deposição Primária: Garantindo a Primeira Conexão de Veículos à Infraestrutura Fixa em um Tempo Determinado

  • Leonardo A. L. Santos UFMG / UFSJ
  • Cristiano M. Silva UFSJ
  • João F. M. Sarubbi CEFET
  • Luciana Lourdes Silva IFMG
  • Frederico Chaves Carvalho UFMG
  • Luís H. C. Reis UFMG
  • José Marcos Silva Nogueira UFMG

Resumo


Este trabalho apresenta uma nova forma de alocação de infraestrutura de comunicação para rede veiculares. O objetivo é maximizar a quantidade de veículos tendo o seu primeiro contato com a infraestrutura dentro de um limite pré-definido de tempo. A aplicação dessa estratégia permite identificar os pontos de entrada de tráfego na rede veicular, fundamentais para o controle da capacidade do sistema viário e do sistema de comunicações. Em termos de gestão do tráfego e da rede veicular, os pontos de entrada são locais onde sistemas de monitoramento de tráfego podem ser implementados para coletar dados em tempo real e readequar a rede mediante mudanças no fluxo de veículos. Os resultados demonstram que a Deposição Primária consegue aumentar a quantidade de veículos atingindo uma área de cobertura, quando comparada com a estratégia intuitiva de se alocar as unidades de comunicação nos pontos de maior fluxo de veículos.

Referências

Bastos, A. V., Silva, C. M., and da Silva, D. C. (2018). Assisted routing algorithm for d2d communication in 5g wireless networks. In 2018 Wireless Days (WD), pages 28–30.

Bazzi, A., Masini, B. M., and Andrisano, O. (2011). On the frequent acquisition of small data through rach in umts for its applications. IEEE Transactions on Vehicular Technology, 60(7):2914–2926.

Cataldi, P. and Harri, J. (2011). User/operator utility-based infrastructure deployment strategies for vehicular networks. In Vehicular Technology Conference (VTC Fall), 2011 IEEE, pages 1–5.

Guidoni, D. L., Gottsfritz, E. N., Meneguette, R. I., Silva, C. M., Filho, G. P. R., and Souza, F. S. H. (2022). Toward an efficient data dissemination protocol for vehicular ad-hoc networks. IEEE Access, 10:123711–123722.

Lu, N., Cheng, N., Zhang, N., Shen, X., and Mark, J. W. (2014). Connected vehicles: Solutions and challenges. IEEE internet of things journal, 1(4):289–299.

Resende, M. G. and Ribeiro, C. C. (2016). Optimization by GRASP. Springer.

Silva, C. M., Aquino, A. L. L., and Meira Jr, W. (2014). Design of roadside infrastructure for information dissemination in vehicular networks. In Network Operations and Management Symposium (NOMS), 2014 IEEE, pages 1–8.

Silva, C. M., Aquino, A. L. L., and Meira, Jr, W. (2015). Deployment of roadside units based on partial mobility information. Computer Communications, 60(0):28 – 39.

Silva, C. M., Masini, B. M., Ferrari, G., and Thibault, I. (2017a). A Survey on Infrastructure-Based Vehicular Networks. Mobile Information Systems, 2017, Article ID 6123868:28–56.

Silva, C. M., Meira, W., and Sarubbi, J. F. M. (2016). Non-intrusive planning the roadside infrastructure for vehicular networks. IEEE Transactions on Intelligent Transportation Systems, 17(4):938–947.

Silva, C. M., Santos, L. A. L., Sumika, F. S. H., Mokhtari, S., Guidoni, D. L., and Nogueira, J. M. S. (2021). Omega deployment: Designing the communication roadside infrastructure for vehicles ensuring minimum qos levels of connectivity during fluctuations of the vehicles flow. In 2021 IEEE Latin-American Conference on Communications (LATINCOM), pages 1–6.

Silva, C. M., Sarubbi, J. F. M., Mokhtari, S., Santos, L. A. L., Silva, L. D., Souza, F. S. H., Guidoni, D. L., and Nogueira, J. M. S. (2023). Rage: A novel strategy for solving non-polynomial problems through the random generation of solutions and incremental reduction of the number of candidates: A case study applied to the design of the network infrastructure for connected vehicles. Expert Systems with Applications, 213:118900.

Silva, C. M., Silva, F. A., Sarubbi, J. F., Oliveira, T. R., Meira Jr, W., and Nogueira, J. M. S. (2017b). Designing mobile content delivery networks for the Internet of vehicles. Vehicular Communications, 8:45 – 55. Internet of Vehicles.

Silva, C. M., Silva, L. D., Santos, L. A. L., Sarubbi, J. F. M., and Pitsillides, A. (2019). Broadening understanding on managing the communication infrastructure in vehicular networks: Customizing the coverage using the delta network. Future Internet, 11(1).

Swain, P., Christophorou, C., Bhattacharjee, U., Silva, C. M., and Pitsillides, A. (2018). Selection of ue-based virtual small cell base stations using affinity propagation clustering. In 2018 14th International Wireless Communications & Mobile Computing Conference (IWCMC), pages 1104–1109. IEEE.

Trullols, O., Fiore, M., Casetti, C., Chiasserini, C.-F., and Ordinas, J. B. (2010). Planning roadside infrastructure for information dissemination in intelligent transportation systems. Computer Communications, 33(4):432–442.

Uppoor, S. and Fiore, M. (2012). A large-scale vehicular mobility dataset of the Cologne urban area. In 14èmes Rencontres Francophones sur les Aspects Algorithmiques des Télécommunications (AlgoTel), pages 1–4, Hérault, France, France.

Uppoor, S., Trullols-Cruces, O., Fiore, M., and Barcelo-Ordinas, J. M. (2014). Generation and analysis of a large-scale urban vehicular mobility dataset. IEEE Transactions on Mobile Computing, 13(5):1061–1075.

Zheng, Z., Sinha, P., and Kumar, S. (2009). Alpha coverage: Bounding the interconnection gap for vehicular internet access. In IEEE INFOCOM 2009, pages 2831–2835. IEEE.
Publicado
20/05/2024
SANTOS, Leonardo A. L.; SILVA, Cristiano M.; SARUBBI, João F. M.; SILVA, Luciana Lourdes; CARVALHO, Frederico Chaves; REIS, Luís H. C.; NOGUEIRA, José Marcos Silva. Deposição Primária: Garantindo a Primeira Conexão de Veículos à Infraestrutura Fixa em um Tempo Determinado. In: SIMPÓSIO BRASILEIRO DE REDES DE COMPUTADORES E SISTEMAS DISTRIBUÍDOS (SBRC), 42. , 2024, Niterói/RJ. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 253-266. ISSN 2177-9384. DOI: https://doi.org/10.5753/sbrc.2024.1310.

Artigos mais lidos do(s) mesmo(s) autor(es)