Network Slice Monitoring System For Disaster Detection
Resumo
The use of monitoring systems for risk areas has increased significantly, especially with the use of IoT applications, which has driven Early Warning Systems (EWS). However, risk situations due to natural disasters can cause malfunction of communication networks making such monitoring unfeasible. In this paper we propose an unorthodox method for disaster detection, based on sliced network traffic monitoring. In the presented system the network traffic is monitored by a Monitoring Agent module that uses a Random Forests method to identify anomalous network traffic events. Simulation results show that our proposal is a promising solution for disaster detection, with the advantage that it could be used in different situations.
Referências
Agarwal, P. K., Efrat, A., Ganjugunte, S. K., Hay, D., Sankararaman, S., & Zussman, G. "The resilience of WDM networks to probabilistic geographical failures." IEEE/ACM Transactions on Networking, 21(5), 1525-1538 (2013).
Boutaba, R., Salahuddin, M. A., Limam, N., Ayoubi, S., Shahriar, N., Estrada-Solano, F., & Caicedo, O. M. "A comprehensive survey on machine learning for networking: evolution, applications and research opportunities." Journal of Internet Services and Applications, 9(1), 1-99 (2018).
Breiman, L. "Random forests." Machine Learning, 45(1), 5-32 (2001).
Clayman, S., Neto, A., Verdi, F., Correa, S., Sampaio, S., Sakelariou, I., ... & Serrat, J. "The NECOS approach to end-to-end cloud-network slicing as a service." IEEE Communications Magazine, 59(3), 91-97 (2021).
Esposito, M., Palma, L., Belli, A., Sabbatini, L., & Pierleoni, P. "Recent Advances in Internet of Things Solutions for Early Warning Systems: A Review." Sensors, 22(6), 2124 (2022).
Esposito, C., Gouglidis, A., Hutchison, D., Gurtov, A., Helvik, B. E., Heegaard, P. E., ... & Rak, J. "On the Disaster Resiliency within the Context of 5G Networks: The RECODIS Experience." Institute of Electrical and Electronics Engineers (IEEE), (2018).
Farias, F., Pinheiro, B., Abelém, A., Maciel Jr, P., Rocha, A., Verdi, F., ... & Rothenberg, C. "Project NECOS: Towards Lightweight Resource Fatigue in Federated Cloud Infrastructures." In Proceedings of the X Workshop on Experimental Research on the Future Internet, pp. 56-63 (2019, May). SBC.
Foukas, X., Patounas, G., Elmokashfi, A., & Marina, M. K. "Network slicing in 5G: Survey and challenges." IEEE Communications Magazine, 55(5), 94-100 (2017).
Furquim, G., Filho, G. P., Jalali, R., Pessin, G., Pazzi, R. W., & Ueyama, J. "How to improve fault tolerance in disaster predictions: a case study about flash floods using IoT, ML and real data." Sensors, 18(3), 907 (2018).
Geurts, P., Ernst, D., & Wehenkel, L. "Extremely randomized trees." Machine Learning, 63, 3-42 (2006).
Gomes, T., Tapolcai, J., Esposito, C., Hutchison, D., Kuipers, F., Rak, J., ... & Tornatore, M. "A survey of strategies for communication networks to protect against large-scale natural disasters." In 2016 8th International Workshop on Resilient Networks Design and Modeling (RNDM), pp. 11-22 (2016, September). IEEE.
Im, J., Park, H., & Takeuchi, W. "Advances in remote sensing-based disaster monitoring and assessment." Remote Sensing, 11(18), 2181 (2019).
Jahir, Y., Atiquzzaman, M., Refai, H., Paranjothi, A., & LoPresti, P. G. "Routing protocols and architecture for disaster area networks: A survey." Ad Hoc Networks, 82, 1-14 (2019).
Khan, A., Gupta, S., & Gupta, S. K. "Multi-hazard disaster studies: Monitoring, detection, recovery, and management, based on emerging technologies and optimal techniques." International Journal of Disaster Risk Reduction, 47, 101642 (2020).
Kreutz, D., Ramos, F. M., Verissimo, P. E., Rothenberg, C. E., Azodolmolky, S., & Uhlig, S. "Software-defined networking: A comprehensive survey." Proceedings of the IEEE, 103(1), 14-76 (2014).
Kwon, D., Kim, H., Kim, J., Suh, S. C., Kim, I., & Kim, K. J. "A survey of deep learning-based network anomaly detection." Cluster Computing, 22(1), 949-961 (2019).
Linardos, V., Drakaki, M., Tzionas, P., & Karnavas, Y. L. "Machine Learning in Disaster Management: Recent Developments in Methods and Applications." Machine Learning and Knowledge Extraction, 4(2), 446-473 (2022).
Mijumbi, R., Serrat, J., Gorricho, J. L., Bouten, N., De Turck, F., & Boutaba, R. "Network function virtualization: State-of-the-art and research challenges." IEEE Communications Surveys & Tutorials, 18(1), 236-262 (2015).
Nassif, A. B., Talib, M. A., Nasir, Q., & Dakalbab, F. M. "Machine learning for anomaly detection: A systematic review." IEEE Access, 9, 78658-78700 (2021).
Pasquini, R., Miani, R. S., Coelho, P. R., Neto, A. V., Hidalgo, N., Gutiérrez, M., ... & Grampín, E. "ADMITS: Architecting Distributed Monitoring and Analytics in IoT-based Disaster Scenarios." In Anais do XII Simpósio Brasileiro de Computação Ubíqua e Pervasiva, pp. 11-20 (2020, June). SBC.
Stadler, R., Pasquini, R., & Fodor, V. "Learning from network device statistics." Journal of Network and Systems Management, 25, 672-698 (2017).
Porte, J., Briones, A., Maso, J. M., Pares, C., Zaballos, A., & Pijoan, J. L. "Heterogeneous wireless IoT architecture for natural disaster monitorization."
Rossetto, A., Geyer, C., Arantes, L., & Sens, P. "Impact fd: An unreliable failure detector based on process relevance and confidence in the system." Computer Journal, To be published (2018).
Scardino, G., Scicchitano, G., Chirivì, M., Costa, P. J., Luparelli, A., & Mastronuzzi, G. "Convolutional Neural Network and Optical Flow for the Assessment of Wave and Tide Parameters from Video Analysis (LEUCOTEA): An Innovative Tool for Coastal Monitoring." Remote Sensing, 14(13), 2994 (2022).
Sendai Framework for Disaster Risk Reduction. Available online: [link] (accessed on 18 November 2024).
Yu, H., Musumeci, F., Zhang, J., Tornatore, M., & Ji, Y. "Isolation-aware 5G RAN slice mapping over WDM metro-aggregation networks." Journal of Lightwave Technology, 38(6), 1125-1137 (2020).
Yao, D., Yin, M., Luo, J., & Zhang, S. "Network anomaly detection using random forests and entropy of traffic features." In 2012 Fourth International Conference on Multimedia Information Networking and Security, pp. 926-929 (2012, November). IEEE.