GeOASDVN: Um protocolo geocast ciente de obstáculos baseado em Redes Veiculares Definidas por Software

  • Felipe Saraiva da Costa UFPI
  • Roniel Soares de Sousa UFMG
  • André C. B. Soares UFPI
  • Antonio A. F. Loureiro UFMG
  • Luiz Filipe M. Vieira UFMG

Resumo


As Redes Veiculares (VANETs) permitem a utilização de servic¸os de rede por motoristas e passageiros em veículos. Devido à alta mobilidade dos veículos, a topologia das VANETs é dinâmica e representa um desafio para o desenvolvimento de protocolos de comunicação. Neste contexto, o paradigma de Redes Veiculares Definidas por Software (SDVN) surge como uma alternativa promissora que permite a criação de protocolos flexíveis e adaptáveis. Este trabalho apresenta um protocolo de disseminação geocast que utiliza SDVN e informações do ambiente e dos veículos para otimizar a disseminação de mensagens. Os resultados obtidos através de simulações mostram que o protocolo apresenta um comportamento mais eficiente que os adversários, tanto em cenários que consideram construções (realístico) quanto em cenários que não consideram.

Palavras-chave: Redes Veículares, Protocolos de Comunicação, Redes Definidas por Software

Referências

Bachir, A. and Benslimane, A. (2003). A multicast protocol in ad hoc networks intervehicle geocast. In The 57th IEEE Semiannual Vehicular Technology Conference, 2003. VTC 2003-Spring., volume 4, pages 2456–2460 vol.4.

Bedogni, L., Gramaglia, M., Vesco, A., Fiore, M., Härri, J., and Ferrero, F. (2015). The bologna ringway dataset: Improving road network conversion in sumo and validating urban mobility via navigation services. IEEE Transactions on Vehicular Technology, 64(12):5464–5476.

BolognaRingwayDataset (2016). http://www.cs.unibo.it/projects/ bolognaringway/files/bolognaringway_1.0.tar.gz.

Butenko, S., Cheng, X., Oliveira, C. A., and Pardalos, P. M. (2004). A New Heuristic for the Minimum Connected Dominating Set Problem on Ad Hoc Wireless Networks, pages 61–73. Springer US, Boston, MA.

Clark, B. N., Colbourn, C. J., and Johnson, D. S. (1990). Unit disk graphs. Discrete Mathematics, 86(1–3):165 – 177.

de Sousa, R. S., da Costa, F. S., Soares, A. C. B., Vieira, L. F. M., and Loureiro, A. A. F. (2018). Geo-sdvn: A geocast protocol for software defined vehicular networks. In 2018 IEEE International Conference on Communications (ICC), pages 1–6.

Guha, S. and Khuller, S. (1998). Approximation algorithms for connected dominating sets. Algorithmica, 20(4):374–387.

Hagenauer, F., Dressler, F., and Sommer, C. (2014). Poster: A simulator for heterogeneous vehicular networks. In 2014 IEEE Vehicular Networking Conference (VNC), pages 185–186.

Hartenstein, H. and Laberteaux, L. P. (2008). A tutorial survey on vehicular ad hoc networks. IEEE Communications Magazine, 46(6):164–171.

He, Z., Cao, J., and Liu, X. (2016). Sdvn: enabling rapid network innovation for heterogeneous vehicular communication. IEEE Network, 30(4):10–15.

Joshi, H. P., Sichitiu, M. L., and Kihl, M. (2007). Distributed robust geocast multicast routing for inter-vehicle communication. In Proceedings of WEIRD Workshop on WiMax, Wireless and Mobility, pages 9–21.

Kaiwartya, O., Kumar, S., and Kasana, R. (2013). Traffic light based time stable geocast (t-tsg) routing for urban vanets. In 2013 Sixth International Conference on Contemporary Computing (IC3), pages 113–117.

Kazmi, A., Khan, M. A., and Akram, M. U. (2016). Devanet: Decentralized softwaredefined vanet architecture. In 2016 IEEE International Conference on Cloud Engineering Workshop (IC2EW), pages 42–47.

Krajzewicz, D., Erdmann, J., Behrisch, M., and Bieker, L. (2012). Recent development and applications of SUMO - Simulation of Urban MObility. International Journal On Advances in Systems and Measurements, 5(3&4):128–138.

Ku, I., Lu, Y., Gerla, M., Gomes, R. L., Ongaro, F., and Cerqueira, E. (2014). Towards software-defined vanet: Architecture and services. In 2014 13th Annual Mediterranean Ad Hoc Networking Workshop (MED-HOC-NET), pages 103–110.

Kumar, A., Kumar, S., and Kumar, V. (2016). A novel energy efficient geocast routing algorithm for mobile ad hoc networks. In 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), pages 2926–2929.

Li, P., Zhang, T., Huang, C., Chen, X., and Fu, B. (2017). Rsu-assisted geocast in vehicular ad hoc networks. IEEE Wireless Communications, 24(1):53–59.

Macedo, D. F., Guedes, D., Vieira, L. F., Vieira, M. A., and Nogueira, M. (2015). Programmable networks—from software-defined radio to software-defined networking. IEEE communications surveys & tutorials, 17(2):1102–1125.

Maihofer, C. (2004). A survey of geocast routing protocols. IEEE Communications Surveys Tutorials, 6(2):32–42.
Omar, H. A., Zhuang, W., and Li, L. (2013). Vemac: A tdma-based mac protocol for reliable broadcast in vanets. IEEE Transactions on Mobile Computing, 12(9):1724– 1736.

OpenStreetMap (2015). OpenStreetMap. http://www.openstreetmap.org.

Rahbar, H., Naik, K., and Nayak, A. (2010). Dtsg: Dynamic time-stable geocast routing in vehicular ad hoc networks. In 2010 The 9th IFIP Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net), pages 1–7.

Sommer, C., Eckhoff, D., German, R., and Dressler, F. (2011). A Computationally Inexpensive Empirical Model of IEEE 802.11p Radio Shadowing in Urban Environments. In 8th IEEE/IFIP Conference on Wireless On demand Network Systems and Services (WONS 2011), pages 84–90, Bardonecchia, Italy. IEEE.

Sousa, R. S., Loureiro, A. A. F., Vieira, L. F. M., Soares, A. C. B., and da Costa, F. S. (2017). Geo-sdvn: Um protocolo geocast para redes veiculares definidas por software. In Anais XXXV do Simpósio Brasileiro de Redes de Computadores, pages 487–500.

Varga, A. and Hornig, R. (2008). An overview of the omnet++ simulation environment. In Proceedings of the 1st International Conference on Simulation Tools and Techniques for Communications, Networks and Systems & Workshops, Simutools ’08, pages 60:1–60:10, ICST, Brussels, Belgium, Belgium. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering).

Voicu, R. C., Abbasi, H. I., Fang, H., Kihei, B., Copeland, J. A., and Chang, Y. (2014). Fast and reliable broadcasting in vanets using snr with ack decoupling. In 2014 IEEE International Conference on Communications (ICC), pages 574–579.
Publicado
06/05/2019
Como Citar

Selecione um Formato
DA COSTA, Felipe Saraiva; SOARES DE SOUSA, Roniel; SOARES, André C. B.; LOUREIRO, Antonio A. F.; VIEIRA, Luiz Filipe M.. GeOASDVN: Um protocolo geocast ciente de obstáculos baseado em Redes Veiculares Definidas por Software. In: SIMPÓSIO BRASILEIRO DE REDES DE COMPUTADORES E SISTEMAS DISTRIBUÍDOS (SBRC), 37. , 2019, Gramado. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2019 . p. 1084-1097. ISSN 2177-9384. DOI: https://doi.org/10.5753/sbrc.2019.7424.

Artigos mais lidos do(s) mesmo(s) autor(es)

<< < 1 2 3 4 > >>