Classification of anatomical landmarks in the gastrointestinal tract with endoscopy images utilizing convolutional neural networks and triplet loss

  • Lisle Faray de Paiva UFMA
  • Alan Carlos de Moura Lima UFMA
  • Geraldo Braz Júnior UFMA
  • Anselmo Cardoso de Paiva UFMA
  • Aristófanes Correa Silva UFMA

Abstract


According to the World Health Organization, 8 million deaths are counted due to gastrointestinal diseases annually. Automatic detection of gastrointestinal landmarks is a task that can further help medical professionals reducing cost and time in exploratory exams. Computer-aided detection and diagnosis systems have been widely explored in the scientific field. However, it takes a lot of processing power to achieve satisfactory results. In order to overcome this problem, this work uses a simple Convolutional Neural Network together with the Triplet Loss cost function to extract image characteristics of 3 gastrointestinal anatomical landmarks (z-line, pylorus, and cecum) to classify those images.For the training it's used the dataset Kvasir-v2, obtaining 96,60% of Precision, 97,71% of Accuracy, 96,91% of Specificity, 98,61% of Recall 97,59% of F1-score.

References

Abdullah-Al-Wadud, M., Kabir, M. H., Dewan, M. A. A., and Chae, O. (2007). A dynamic histogram equalization for image contrast enhancement. IEEE Transactions on Consumer Electronics, 53(2):593–600.

Alaskar, H., Hussain, A., Al-Aseem, N., Liatsis, P., and Al-Jumeily, D. (2019). Application of convolutional neural networks for automated ulcer detection in wireless capsule endoscopy images. Sensors, 19(6).

Chan, J. S. H., Chao, A. C. W., Cheung, V. C. H., Wong, S. S. K., Tang, W., Wu, J. C. Y., Chan, H. L. Y., Chan, F. K. L., Sung, J. J. Y., and Ng, S. C. (2019). Gastrointestinal disease burden and mortality: A public hospital-based study from 2005 to 2014. Journal of gastroenterology and hepatology, 34(1):124–131.

Cogan, T., Cogan, M., and Tamil, L. (2019). Mapgi: Accurate identification of anatomical landmarks and diseased tissue in gastrointestinal tract using deep learning. Computers in Biology and Medicine, 111:103351.

de Lange, T., Halvorsen, P., and Riegler, M. (2018). Methodology to develop machine learning algorithms to improve performance in gastrointestinal endoscopy. World Journal of Gastroenterology, 24(45):5057–5062.

Deeba, F., Bui, F. M., and Wahid, K. A. (2020). Computer-aided polyp detection based on image enhancement and saliency-based selection. Biomedical Signal Processing and Control, 55:101530.

Gamage, C., Wijesinghe, I., Chitraranjan, C., and Perera, I. (2019). Gi-net: Anomalies classification in gastrointestinal tract through endoscopic imagery with deep learning. In 2019 Moratuwa Engineering Research Conference (MERCon), pages 66–71. IEEE.

Itoh, T., Kawahira, H., Nakashima, H., and Yata, N. (2018). Deep learning analyzes helicobacter pylori infection by upper gastrointestinal endoscopy images. Endoscopy International Open, 06(02):E139–E144.

Organizações das Nações Unidas (2018). Colorectal cancer. international agency for research on cancer.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830.

Pizer, S. M., Amburn, E. P., Austin, J. D., Cromartie, R., Geselowitz, A., Greer, T., ter Haar Romeny, B., Zimmerman, J. B., and Zuiderveld, K. (1987). Adaptive histogram equalization and its variations. Computer vision, graphics, and image processing, 39(3):355–368.

Pogorelov, K., Randel, K. R., Griwodz, C., Eskeland, S. L., de Lange, T., Johansen, D., Spampinato, C., Dang-Nguyen, D.-T., Lux, M., Schmidt, P. T., Riegler, M., and Halvorsen, P. (2017). Kvasir: A multi-class image dataset for computer aided gastrointestinal disease detection. MMSys’17, page 164–169, New York, NY, USA. Association for Computing Machinery.

Schroff, F., Kalenichenko, D., and Philbin, J. (2015). Facenet: A unified embedding for face recognition and clustering. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 815–823.

Takiyama, H., Ozawa, T., Ishihara, S., Fujishiro, M., Shichijo, S., Nomura, S., Miura, M., and Tada, T. (2018). Automatic anatomical classification of esophagogastroduodenoscopy images using deep convolutional neural networks. Scientific Reports, 8(1).

Weinberger, K. Q. and Saul, L. K. (2009). Distance metric learning for large margin nearest neighbor classification. Journal of machine learning research, 10(2).

Wittenberg, T., Zobel, P., Rathke, M., and Mühldorfer, S. (2019). Computer aided detection of polyps in whitelight-colonoscopy images using deep neural networks. Current Directions in Biomedical Engineering, 5(1):231–234.
Published
2021-11-29
PAIVA, Lisle Faray de; LIMA, Alan Carlos de Moura; BRAZ JÚNIOR, Geraldo; PAIVA, Anselmo Cardoso de; SILVA, Aristófanes Correa. Classification of anatomical landmarks in the gastrointestinal tract with endoscopy images utilizing convolutional neural networks and triplet loss. In: NATIONAL MEETING ON ARTIFICIAL AND COMPUTATIONAL INTELLIGENCE (ENIAC), 18. , 2021, Evento Online. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2021 . p. 516-523. ISSN 2763-9061. DOI: https://doi.org/10.5753/eniac.2021.18280.

Most read articles by the same author(s)

1 2 3 4 > >>