Prediction of suicidal behaviors in hospitalized children and adolescents in middle-income countries: a case study of Brazil

  • Isis F. Carvalho Federal University of Minas Gerais
  • Debora Miranda Federal University of Minas Gerais
  • Ana Paula Couto da Silva Federal University of Minas Gerais
  • Anisio M. Lacerda Federal University of Minas Gerais
  • Wagner Meira Jr. Federal University of Minas Gerais
  • Marco A. Romano-Silva Federal University of Minas Gerais
  • Maria Carolina Lobato Federal University of Minas Gerais
  • Gisele L. Pappa Federal University of Minas Gerais

Abstract


Suicide is the first leading cause of death among children and adolescents worldwide. Predictors of suicide-related behaviours might help in the task of intervening to avoid or monitor future suicide risks. In this paper, a sample of individuals who were taken to a Child Psychiatry Facility in Brazil was analyzed. Machine learning algorithms were used to generate models for predicting suicidal behaviour, and the features that better explain this complex behaviour were also analyzed. Results show a sensitivity of 0.83 and a specificity of 0.97.

Keywords: Machine Learning, Suicide prediction, Health application, Suicide risk factors

References

Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag, Berlin, Heidelberg.

Carroll, R., Metcalfe, C., and Gunnell, D. (2014). Hospital presenting self-harm and risk of fatal and non-fatal repetition: systematic review and metaanalysis. PLoS One, 9(2):e89944.

Harris, I., Beese, S., and Moore, D. (2019). Predicting future self-harm or suicide in adolescents: a systematic review of risk assessment scales/tools. BMJ open, 9.

Ji, S., Pan, S., Li, X., Cambria, E., Long, G., and Huang, Z. (2021). Suicidal ideation detection: A review of machine learning methods and applications. IEEE Transactions on Computational Social Systems, 8(1):214–226.

Knipe, D., Padmanathan, P., Newton-Howes, G., Chan, L. F., and Kapur, N. (2022). Suicide and self-harm. Lancet, 399(10338):1903–1916.

Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., Katz, R., Himmelfarb, J., Bansal, N., and Lee, S.-I. (2020). From local explanations to global understanding with explainable ai for trees. Nature Machine Intelligence, 2(1):2522–5839.

Naghavi, M. and Collaborators (2019). Global, regional, and national burden of suicide mortality 1990 to 2016: systematic analysis for the global burden of disease study 2016. BMJ, 364:l94.

Navarro, M. C., Ouellet-Morin, I., Geoffroy, M.-C., Boivin, M., Tremblay, R. E., Côté, S. M., and Orri, M. (2021). Machine Learning Assessment of Early Life Factors Predicting Suicide Attempt in Adolescence or Young Adulthood. JAMA Network Open, 4(3):e211450–e211450.

Orri, M., Boivin, M., and Chen, C. e. a. (2021). Cohort profile: Quebec longitudinal study of child development (qlscd). Soc Psychiatry Psychiatr Epidemiol, 56.

Su, C., Aseltine, R., Doshi, R., Chen, K., Rogers, S. C., and Wang, F. (2020). Machine learning for suicide risk prediction in children and adolescents with electronic health records. Translational Psychiatry, 10(1):413.

van Mens, K., de Schepper, C., Wijnen, B., Koldijk, S. J., Schnack, H., de Looff, P., Lokkerbol, J., Wetherall, K., Cleare, S., C O’Connor, R., and de Beurs, D. (2020). Predicting future suicidal behaviour in young adults, with different machine learning techniques: A population-based longitudinal study. Journal of Affective Disorders, 271:169–177.
Published
2023-09-25
CARVALHO, Isis F.; MIRANDA, Debora; DA SILVA, Ana Paula Couto; LACERDA, Anisio M.; MEIRA JR., Wagner; ROMANO-SILVA, Marco A.; LOBATO, Maria Carolina; PAPPA, Gisele L.. Prediction of suicidal behaviors in hospitalized children and adolescents in middle-income countries: a case study of Brazil. In: NATIONAL MEETING ON ARTIFICIAL AND COMPUTATIONAL INTELLIGENCE (ENIAC), 20. , 2023, Belo Horizonte/MG. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2023 . p. 1225-1236. ISSN 2763-9061. DOI: https://doi.org/10.5753/eniac.2023.234861.

Most read articles by the same author(s)

1 2 > >>