Se for, vá na paz: Construindo Rotas Seguras para Veículos Coletivos Urbanos

  • Vinícius G. J. Almeida UFV
  • Thais R. M. B. Silva UFV
  • Fabrício A. Silva UFV

Abstract


Context-aware mobility can be defined as the use of different types of data to offer improvements for both drivers and passengers, as well as to the flow of vehicles. In this scenario, one of the services offered will be the use of models built based on such data, to trace routes to be used by different types of vehicles. Among the possible contexts to be considered, safety is one that has been explored recently. Although the works on safe routes found so far have evaluated different solutions, they were mostly tested for private vehicles and evaluated from a computational point of view. This work proposes RACIONAL, a safety route solution for municipal buses, built on well-accepted fundamentals in the literature for private vehicles, but adapted to the specific characteristics of collectives, such as the need to consider bus stops and the impossibility of carrying out constant temporal changes. The evaluation results show that, with few spatio-temporal adjustments, it is possible to offer passengers routes that maintain the coverage of the public transport service, while improving their safety, avoiding areas considered dangerous, without imposing significant increase in distance travelled.

References

Atzori, L., Iera, A., and Morabito, G. (2010). The internet of things: A survey. Computer Networks, 54(15):2787–2805.

Atzori, L., Iera, A., and Morabito, G. (2016). Understanding the internet of things: definition, potentials, and societal role of a fast evolving paradigm. Ad Hoc Networks, 56.

Babu, V. S. and Viswanath, P. (2008). An efficient and fast parzen-window density based clustering method for large data sets. In International Conference on Emerging Trends in Engineering and Technology, pages 531–536.

de Souza, A. and Villas, L. (2020). Vem tranquilo: Rotas eficientes baseado na dinâmica urbana futura com deep learning e computação de borda. In Anais do XXXVIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 351–364, Porto Alegre, RS, Brasil. SBC.

Félix Mata et al., Miguel Torres-Ruiz, G. G. R. Q. R. Z.-F. M. M.-I. E. L. (2016). A mobile information system based on crowd-sensed and official crime data for finding safe routes: A case study of mexico city. Mobile Information Systems, 2016:1–11.

Galbrun, E., Pelechrinis, K., and Terzi, E. (2016). Urban navigation beyond shortest route: The case of safe paths. Information Systems, 57:160–171.

Ladeira, L., de Souza, A., Silva, T., Filho, G. R., Peixoto, M. M., and Villas, L. (2020). Cerva: Roteamento contextual para veículos com risco espaço-temporal. In Anais do XXXVIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 379–392, Porto Alegre, RS, Brasil. SBC.

Ladeira, L., Souza, A., Pereira, G., Silva, T. H., and Villas, L. (2019). Serviço de sugestão de rotas seguras para veículos. In Anais do XXXVII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 608– 621, Porto Alegre, RS, Brasil. SBC.

Liu, Q., Kumar, S., and Mago, V. (2017). Safernet: Safe transportation routing in the era of internet of vehicles and mobile crowd sensing. 2017 14th IEEE Annual Consumer Communications Networking Conference (CCNC).

Santos, F. A., Rodrigues, D. O., Silva, T. H., Loureiro, A. A. F., and Villas, L. A. (2017). Rotas veiculares cientes de contexto: Arcabouço e aná lise usando dados oficiais e sensoriados por usuários sobre crimes. In Anais do XXII Workshop de Gerência e Operação de Redes e Serviços, Porto Alegre, RS, Brasil. SBC.

Tompson, L., Partridge, H., and Shepherd, N. (2009). Hot routes: Developing a new technique for the spatial analysis of crime. Crime Mapping: A Journal of Research and Practice, 1(1):77–96.

Verbraeken, J., Wolting, M., Katzy, J., Kloppenburg, J., Verbelen, T., and Rellermeyer, J. S. (2020). A survey on distributed machine learning. ACM Comput. Surv., 53(2).

Wen, M., Rosa, T. d. O., Souza, M. C., Aleixo, R. P., Alves, C., Sá, L., Santana, E. F. Z., and Kon, F. (2018). Criação de modelo para simulação de movimentação de Ônibus a partir de dados reais. In Proceedings of the 1st Brazilian Workshop on Smart Cities, WBCI 2018, pages 1–10.

Zhang, J., Wang, F.-Y., Wang, K., Lin, W.-H., Xu, X., and Chen, C. (2011). Data-driven intelligent transportation systems: A survey. IEEE Transactions on Intelligent Transportation Systems, 12(4):1624–1639.
Published
2022-05-23
ALMEIDA, Vinícius G. J.; SILVA, Thais R. M. B.; SILVA, Fabrício A.. Se for, vá na paz: Construindo Rotas Seguras para Veículos Coletivos Urbanos. In: BRAZILIAN SYMPOSIUM ON COMPUTER NETWORKS AND DISTRIBUTED SYSTEMS (SBRC), 40. , 2022, Fortaleza. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2022 . p. 140-153. ISSN 2177-9384. DOI: https://doi.org/10.5753/sbrc.2022.221978.

Most read articles by the same author(s)

1 2 3 > >>