Detecção de Fake News em Língua Portuguesa Combinando Redes Neurais Convolucionais e Algoritmos de Aprendizagem de Máquina

  • Felipe Sousa IFCE
  • Alice Barbosa IFCE
  • Carina Oliveira IFCE
  • Reinaldo Braga IFCE

Abstract


The popularization of social media has been a facilitator of access to information. However, the growing volume of news sharing has increased concern around "fake news", due to its potential for manipulation of public opinion. Therefore, this article presents a proposal for the analysis of news in Portuguese and the detection of fake news, using Machine Learning and Convolutional Neural Networks. For this purpose, the Fake.Br database was used, which presents 7,200 news articles in Portuguese. The study carried out focused on analyzing both the texts and their respective metadata. Thus, after an analysis of the selected algorithms, an accuracy of 97% was obtained.

References

Allcott, H. and Gentzkow, M. (2017). Social media and fake news in the 2016 election. Journal of Economic Perspectives, 31:211–236.

Barbosa, V. N. (2020). Sirene: Solução inteligente para detecção de notícias falsas. Monografia (Bacharelado em Ciência da Computação), Instituto Federal de Educação, Ciência e Tecnologia do Ceará IFCE.

Gonzalez, M. and Lima, V. L. S. d. (2003). Recuperação de informação e processamento da linguagem natural. In XXIII Congresso da Sociedade Brasileira de Computação.

IBGE (2020). Acesso à Internet e à televisão e posse de telefone móvel celular para uso pessoal 2018. IBGE.

ITU (2021). Individuals using the internet, 2005-2021. https://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx. Acesso em: 2022-02-23.

Kaliyar, R. K., Goswami, A., Narang, P., and Sinha, S. (2020). Fndnet – a deep convolutional neural network for fake news detection. Cognitive Systems Research, 61:32–44.

Matsugu, M., Mori, K., Mitari, Y., and Kaneda, Y. (2003). Subject independent facial expression recognition with robust face detection using a convolutional neural network. Neural Networks, 16:555–559.

Monteiro, R., Santos, R., Pardo, T., de Almeida, T., Ruiz, E., and Vale, O. (2018). Contributions to the study of fake news in portuguese: New corpus and automatic detection results. Villavicencio A. et al. (eds) Computational Processing of the Portuguese Language. PROPOR 2018. Lecture Notes in Computer Science, vol 11122. Springer, Cham.

Oshikawa, R., Qian, J., and Wang, W. (2018). A survey on natural language processing for fake news detection. In Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020).

Pereira, C. and Marques-Neto, H. (2021). Caracterização da reação de agências de factchecking às publicações sobre a pandemia da covid-19 em redes sociais. In Anais do XXXIX Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 113–126, Porto Alegre, RS, Brasil. SBC.

Raymer, K. and Harriss, L. (2017). Online information and fake news. https://post.parliament.uk/research-briefings/post-pn-0559/. Acesso em: 2020-10-10.

Rosa, M. d. A., Amorim, H. C., Gomes, R. M., and Santos, B. A. (2019). Detecçao de fake news: uma abordagem utilizando redes neurais convolucionais.

Sharma, K., Qian, F., Jiang, H., Ruchansky, N., Zhang, M., and Liu, Y. (2019). Combating fake news: A survey on identification and mitigation techniques. ACM Transactions on Intelligent Systems and Technology.

Wang, W. Y. (2017). ”liar, liar pants on fire”: A new benchmark dataset for fake news detection. CoRR, abs/1705.00648.
Published
2022-05-23
SOUSA, Felipe; BARBOSA, Alice; OLIVEIRA, Carina; BRAGA, Reinaldo. Detecção de Fake News em Língua Portuguesa Combinando Redes Neurais Convolucionais e Algoritmos de Aprendizagem de Máquina. In: BRAZILIAN SYMPOSIUM ON COMPUTER NETWORKS AND DISTRIBUTED SYSTEMS (SBRC), 40. , 2022, Fortaleza. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2022 . p. 336-348. ISSN 2177-9384. DOI: https://doi.org/10.5753/sbrc.2022.222325.

Most read articles by the same author(s)

1 2 > >>