Um Protocolo de Roteamento Store-Carry-Forward para Unir Redes de Ônibus e Internet dos Drones

  • Lailla M. S. Bine University of Ottawa / UFMG
  • Azzedine Boukerche University of Ottawa
  • Linnyer B. Ruiz UEM
  • Antonio A. F. Loureiro UFMG

Resumo


A Internet of Drones (IoD) é uma arquitetura que possibilita que diferentes drones compartilhem o mesmo espaço aéreo. Um protocolo store-carry-forward pode ser adequado para manter a comunicação na rede. Além disso, diferentes redes podem colaborar para preencher as lacunas de comunicação. O objetivo principal deste trabalho é apresentar o IoDSCF – um protocolo de roteamento store-carry-forward para integrar redes de ônibus e IoD. O IoDSCF aproveita essas redes para estender a acessibilidade da comunicação. IoDSCF apresenta uma melhor taxa de entrega de pacotes e atraso fim-a-fim do que uma solução baseada apenas na comunicação entre drones. Esta é uma estratégia promissora para comunicação de dados em cidades inteligentes.

Referências

Alsamhi, S. H., Ma, O., Ansari, M. S., & Almalki, F. A. (2019). Survey on collaborative smart drones and internet of things for improving smartness of smart cities. Ieee Access, 7, 128125–128152.

Bine, L. M., Boukerche, A., Ruiz, L. B., & Loureiro, A. A. (2021). Iodagr: An airwaybased geocast routing protocol for internet of drones. In Icc (pp. 1–6).

Bouachir, O., Aloqaily, M., Al Ridhawi, I., Alfandi, O., & Salameh, H. B. (2020). Uavassisted vehicular communication for densely crowded environments. In Noms (pp. 1–4).

Celes, C., Boukerche, A., & Loureiro, A. A. (2019). Mobility data assessment for vehicular networks. In Icc (pp. 1–6).

Choudhury, S., Solovey, K., Kochenderfer, M. J., & Pavone, M. (2021). Efficient largescale multi-drone delivery using transit networks. Journal of AI Research, 70, 757–788.

Fawaz, W., Atallah, R., Assi, C., & Khabbaz, M. (2017). Unmanned aerial vehicles as store-carry-forward nodes for vehicular networks. IEEE Access, 5, 23710–23718.

Gharibi, M., Boutaba, R., & Waslander, S. L. (2016). Internet of drones. IEEE Access, 4, 1148–1162.

Gupta, K., Bansal, S., & Goel, R. (2021). Uses of drones in fighting covid-19 pandemic. In Smart (pp. 651–655).

He, Y., Zhai, D., Wang, D., Tang, X., & Zhang, R. (2020). A relay selection protocol for uav-assisted vanets. Applied Sciences, 10(23), 8762.

Hii, M. S. Y., Courtney, P., & Royall, P. G. (2019). An evaluation of the delivery of medicines using drones. Drones, 3(3), 52.

Jin, Y., Xu, J., Wu, S., Xu, L., Yang, D., & Xia, K. (2021). Bus network assisted drone scheduling for sustainable charging of wireless rechargeable sensor network. Journal of Systems Architecture, 116, 102059.

Khabbaz, M., Antoun, J., & Assi, C. (2019). Modeling and performance analysis of uav-assisted vehicular networks. IEEE TVT, 68(9), 8384–8396.

Labib, N. S., Brust, M. R., Danoy, G., & Bouvry, P. (2021). The rise of drones in internet of things: A survey on the evolution, prospects and challenges of unmanned aerial vehicles. IEEE Access, 9, 115466–115487.

Lamptey, E., & Serwaa, D. (2020). The use of zipline drones technology for covid-19 samples transportation in ghana. HighTech and Innovation Journal, 1(2), 67–71.

Oubbati, O. S., Atiquzzaman, M., Ahanger, T. A., & Ibrahim, A. (2020). Softwarization of uav networks: A survey of applications and future trends. IEEE Access, 8, 98073–98125.

Oubbati, O. S., Lakas, A., Zhou, F., Günes¸, M., Lagraa, N., & Yagoubi, M. B. (2017). Intelligent uav-assisted routing protocol for urban vanets. Computer communications, 107, 93–111.

Pan, Y., Li, S., Chen, Q., Zhang, N., Cheng, T., Li, Z., . . . Zhu, T. (2021). Efficient schedule of energy-constrained uav using crowdsourced buses in last-mile parcel delivery. IMWUT, 5(1), 1–23.

Patel, D., Narmawala, Z., Tanwar, S., & Singh, P. K. (2019). A systematic review on scheduling public transport using iot as tool. Smart innovations in communication and computational sciences, 39–48.

Poljak, M., & Sterbenc, A. (2020). Use of drones in clinical microbiology and infectious diseases: current status, challenges and barriers. Clinical Microbiology and Infection, 26(4), 425–430.

Qi, W., Ruan, L., Zhi, Y., & Shen, B. (2021). Risk area identification model of bus bay stops based on distribution of conflicts. Discrete Dynamics in Nature and Society, 2021.

Qin, Y., Kishk, M. A., & Alouini, M.-S. (2020). Performance evaluation of uavenabled cellular networks with battery-limited drones. IEEE Communications Letters, 24(12), 2664–2668.

Sami Oubbati, O., Chaib, N., Lakas, A., Bitam, S., & Lorenz, P. (2020). U2rv: Uavassisted reactive routing protocol for vanets. Inter. Journal of Comms Systems, 33(10), e4104.

Skorup, B., & Haaland, C. (2020). How drones can help fight the coronavirus. Mercatus Center Research Paper Series, Special Edition Policy Brief (2020).
Publicado
23/05/2022
BINE, Lailla M. S.; BOUKERCHE, Azzedine; RUIZ, Linnyer B.; LOUREIRO, Antonio A. F.. Um Protocolo de Roteamento Store-Carry-Forward para Unir Redes de Ônibus e Internet dos Drones. In: SIMPÓSIO BRASILEIRO DE REDES DE COMPUTADORES E SISTEMAS DISTRIBUÍDOS (SBRC), 40. , 2022, Fortaleza. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2022 . p. 419-432. ISSN 2177-9384. DOI: https://doi.org/10.5753/sbrc.2022.222340.

Artigos mais lidos do(s) mesmo(s) autor(es)

<< < 1 2 3 4 > >>