Analysis of Wearable Devices to Collect Movement Data From Primary School Children
Abstract
A child’s movement represent different levels of attention, agitation and interest. Inside the classroom, a teacher alone can not keep track of each student’s behaviour, even though it is informative. This research aimed to analyse and select a wearable device to capture children’s movement and activity in the classroom. A spreadsheet was created for a comparative analysis of the devices considering: price of each unit and software, the sensors it contained, frequency of data collection, internal memory, battery capacity and acceleration range. The ActiGraph GT9X was found to be the best option between 35 devices and will be used to collect movement data from primary school children.
Keywords:
Wearables, Accelerometer, Data Collection, Classroom
References
Barbosa, G. et al.. (2021). Extending interaction to human-computer integration: What do we already know and what do we need to explore? In Proceedings of the XX Brazilian Symposium on Human Factors in Computing Systems, IHC ’21, NY, USA. ACM.
Carbajal, M. L. and Baranauskas, M. C. C. (2020). Analyzing the socioenactive dimensions of creative learning environments with preschool children. In Proceedings of the 19th Brazilian Symposium on Human Factors in Computing Systems, IHC ’20, New York, NY, USA. ACM.
de Santana, V. F. and Otani, L. M. F. (2021). Measuring quantitative situated user experience with a mobile galvanic skin response sensor. In Proceedings of the XX Brazilian Symposium on Human Factors in Computing Systems, IHC ’21, NY, USA. ACM.
Ferreira, P. N., Rodriguez, C. L., and Motti, V. G. (2020). Wearables para coleta de dados de estudantes em ambiente escolar: Mapeamento sistemático. In Anais do XXXI Simpósio Brasileiro de Informática na Educação, pages 1353–1362. SBC
Motti, V. G. (2020). Introduction to wearable computers. In Wearable interaction, pages 1–39. Springer.
Saquib, N., Bose, A., George, D., and Kamvar, S. (2018). Sensei: sensing educational interaction. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 1(4):1–27.
Sasaki, J. et al.. (2017). Orientações para utilização de acelerômetros no brasil. Revista Brasileira de Atividade Física & Saúde, 22(2):110–126.
Carbajal, M. L. and Baranauskas, M. C. C. (2020). Analyzing the socioenactive dimensions of creative learning environments with preschool children. In Proceedings of the 19th Brazilian Symposium on Human Factors in Computing Systems, IHC ’20, New York, NY, USA. ACM.
de Santana, V. F. and Otani, L. M. F. (2021). Measuring quantitative situated user experience with a mobile galvanic skin response sensor. In Proceedings of the XX Brazilian Symposium on Human Factors in Computing Systems, IHC ’21, NY, USA. ACM.
Ferreira, P. N., Rodriguez, C. L., and Motti, V. G. (2020). Wearables para coleta de dados de estudantes em ambiente escolar: Mapeamento sistemático. In Anais do XXXI Simpósio Brasileiro de Informática na Educação, pages 1353–1362. SBC
Motti, V. G. (2020). Introduction to wearable computers. In Wearable interaction, pages 1–39. Springer.
Saquib, N., Bose, A., George, D., and Kamvar, S. (2018). Sensei: sensing educational interaction. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 1(4):1–27.
Sasaki, J. et al.. (2017). Orientações para utilização de acelerômetros no brasil. Revista Brasileira de Atividade Física & Saúde, 22(2):110–126.
Published
2022-10-17
How to Cite
FERREIRA, Poliana Nascimento; RODRIGUEZ, Carla Lopes; MOTTI, Vivian Genaro.
Analysis of Wearable Devices to Collect Movement Data From Primary School Children. In: POSTERS & DEMONSTRATIONS - BRAZILIAN SYMPOSIUM ON HUMAN FACTORS IN COMPUTATIONAL SYSTEMS (IHC), 21. , 2022, Diamantina.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2022
.
p. 88-91.
DOI: https://doi.org/10.5753/ihc_estendido.2022.224850.
