Inferência dos Perfis de Infusão em Sistemas Intravenosos: Uma Abordagem Empregando Técnicas de Aprendizagem de Máquina
Abstract
Intravenous infusion procedures are present when rapid therapeutic return is required. These infusion procedures are among the most usually in hospitals and have the potential to generate a high volume of adverse events. However, infusions still have their inspection perform out based on checked non-automatically, thus, they are subject to failures of different natures. Considering this scenario, this article presents an evaluation of six regression methods used in Machine Learning and applied in the automatic identification of different profiles of intravenous infusions. The evaluations performed out to show that regression models by neural networks are promising for the inferences of infusions.
References
Chambers, D. J. (2019). Principles of intravenous drug infusion. Anaesthesia & Intensive Care Medicine, 20(1):61–64.
Dos Santos, H. D., Ulbrich, A. H. D., Woloszyn, V., and Vieira, R. (2019). DDC-Outlier: Preventing Medication Errors Using Unsupervised Learning. IEEE Journal of Biomedical and Health Informatics, 23(2):874–881.
ECRI, I. (2017). Top 10 Health Technology Hazards for Top 10 Health Technology Hazards for 2017. Technical report, ECRI Institute Patient Safety Organization, Massachusetts, USA, Massachusetts, USA.
Feitosa Neto, A. A., Xavier, J. C., Canuto, A. M. P., and Oliveira, A. C. M. (2019). A comparative study on automatic model and hyper-parameter selection in classifier ensembles. In 2019 8th Brazilian Conference on Intelligent Systems (BRACIS), pages 323–328.
Ferreira, F., Barbosa, J., Gruendemann, F., Machado, R., Yamin, A., and Agostini, L. (2019). Spodi: Simulador do perfil operacional de dispositivos intravenosos para auxilio à tomada de decisões médicas. In Anais do XIX Simpósio Brasileiro de Computação Aplicada à Saúde, pages 34–45, Porto Alegre, RS, Brasil. SBC.
Fink, D., Wagner, A., and Ehlers, W. (2018). Application-driven model reduction for the simulation of therapeutic infusion processes in multi-component brain tissue. Journal of Computational Science, 24:101–115.
Hao, J. and Ho, T. K. (2019). Machine Learning Made Easy: A Review of Scikit-learn Package in Python Programming Language. Journal of Educational and Behavioral Statistics, 44(3):348–361.
Lovich, M. A. and Peterfreund, R. A. (2017). Drug Flow Through Clinical Infusion Systems: How Modeling of the Common-volume Helps Explain Clinical Events. Pharmaceutical Technology in Hospital Pharmacy, 2(2):49–62.
NBR 60601-2-24, A. B. d. N. T. (2015). Equipamento eletromédico Parte 2-24: Requisitos particulares para a segurança básica e o desempenho essencial de bombas de infusão e de controladores de infusão. ABNT.
NEITZKE F., F. (2020a). Github - ffabricio/medical-device: Intravenous drug delivery devices. https://github.com/FFabricio/Data-Set-for-Intravenous-Infusion-Profiles-.git. (Acessadoem 07/08/2020).
NEITZKE F., F. (2020b). Infusionprofiler.ipynb - colaboratory. https://colab.research.google.com/drive/1ZOrrrMci4asHoEICX5nMgMmLJn8TAw5j?usp=sharing. (Acessado em 07/01/2021).
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019). Pytorch: An imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830.
Sait, M. K., Aguam, A. P., Mohidin, S., Eidraous, S. A., Tabsh, L. A., Anfinan, N. M., Khalili, B. M. A., Sait, H. K., and Sait, K. H. (2019). Intravenous Site Complications for Patients Receiving Chemotherapy: An Observational Study. Annals of Short Reports, 2(1032):1–4.
Virtanen, P. and et al. (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17:261–272.
