Automatic evaluation of ocular versions in images

  • Jullyana Fialho Pinheiro UFMA
  • João Dallyson Sousa de Almeida UFMA
  • Jorge Antonio Meireles Teixeira UFMA
  • Geraldo Braz Junior UFMA

Abstract


A vision that comply with the basic visual demands, such as short, long, and lateral vision, needs that ocular muscles work perfectly. People with defective ocular muscles may have several problems including strabismus. This paper presents a method to automate the examination of ocular versions based on images of the patient’s face.

References

Abdullah-Al-Wadud, M. and Chae, O. (2008). Skin segmentation using color distance map and water-flow property. In 2008 The Fourth International Conference on Information Assurance and Security, pages 83–88.

Banerji, S., Sinha, A., and Liu, C. (2013). Haarhog: Improving the hog descriptor for image classification. In 2013 IEEE International Conference on Systems, Man, and Cybernetics, pages 4276–4281.

Banić, N. and Lončarić, S. (2014). Color Badger: A Novel Retinex-Based Local Tone Mapping Operator, pages 400–408. Springer International Publishing, Cham.

Bicas, H. E. A. (2003). Oculomotricidade e seus fundamentos. Arquivos Brasileiros de Oftalmologia, 66:687 – 700.

Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.

De Almeida, J. D. S., Silva, A. C., Teixeira, J. A. M., Paiva, A. C., and Gattass, M. (2015). Computer-aided methodology for syndromic strabismus diagnosis. Journal of digital imaging, 28(4):462–473.

Zheng, Z., Yang, J., and Yang, L. (2005). A robust method for eye features extraction on color image. Pattern Recognition Letters, 26(14):2252 – 2261.
Published
2017-07-02
PINHEIRO, Jullyana Fialho; DE ALMEIDA, João Dallyson Sousa; TEIXEIRA, Jorge Antonio Meireles; BRAZ JUNIOR, Geraldo. Automatic evaluation of ocular versions in images. In: BRAZILIAN SYMPOSIUM ON COMPUTING APPLIED TO HEALTH (SBCAS), 17. , 2017, São Paulo. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2017 . p. 1869-1872. ISSN 2763-8952. DOI: https://doi.org/10.5753/sbcas.2017.3697.

Most read articles by the same author(s)

1 2 > >>